Solve for g (complex solution)
\left\{\begin{matrix}g=-\frac{f\left(4x+3\right)x^{3}}{22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15}\text{, }&x\neq 0\text{ and }x\neq -\frac{3}{4}\text{ and }f\neq 0\text{ and }22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15\neq 0\\g\neq 0\text{, }&x\neq 0\text{ and }x\neq -\frac{3}{4}\text{ and }22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15=0\text{ and }f=0\end{matrix}\right.
Solve for f
f=-\frac{g\left(22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15\right)}{\left(4x+3\right)x^{3}}
g\neq 0\text{ and }x\neq 0\text{ and }x\neq -\frac{3}{4}
Solve for g
\left\{\begin{matrix}g=-\frac{f\left(4x+3\right)x^{3}}{22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15}\text{, }&x\neq -\frac{3}{4}\text{ and }x\neq 0\text{ and }f\neq 0\text{ and }22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15\neq 0\\g\neq 0\text{, }&x\neq 0\text{ and }x\neq -\frac{3}{4}\text{ and }22x^{7}+21x^{6}-36x^{3}-54x^{2}+14x+15=0\text{ and }f=0\end{matrix}\right.
Graph
Share
Copied to clipboard
x^{2}\left(4x+3\right)fx=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g\left(4x+3\right)x^{3}, the least common multiple of gx,3x^{3}+4x^{4}.
\left(4x^{3}+3x^{2}\right)fx=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply x^{2} by 4x+3.
\left(4x^{3}f+3x^{2}f\right)x=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x^{3}+3x^{2} by f.
4fx^{4}+3fx^{3}=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x^{3}f+3x^{2}f by x.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 3x^{3}+4x^{4} by -2x^{-3}-4x^{3}.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x^{-2}x^{3}+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
Use the distributive property to multiply x^{-2}+x^{4}-6 by 9x^{2}+6x^{3}.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x^{1}+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
Calculate x to the power of 1 and get x.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-9x^{-2}x^{2}-6x-9x^{6}-6x^{7}+54x^{2}+36x^{3}\right)
To find the opposite of 9x^{-2}x^{2}+6x+9x^{6}+6x^{7}-54x^{2}-36x^{3}, find the opposite of each term.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-14x-16x^{7}-9x^{-2}x^{2}-9x^{6}-6x^{7}+54x^{2}+36x^{3}\right)
Combine -8x and -6x to get -14x.
4fx^{4}+3fx^{3}=g\left(-6-21x^{6}-14x-16x^{7}-9x^{-2}x^{2}-6x^{7}+54x^{2}+36x^{3}\right)
Combine -12x^{6} and -9x^{6} to get -21x^{6}.
4fx^{4}+3fx^{3}=g\left(-6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}\right)
Combine -16x^{7} and -6x^{7} to get -22x^{7}.
4fx^{4}+3fx^{3}=-6g-21gx^{6}-14gx-22gx^{7}-9gx^{-2}x^{2}+54gx^{2}+36gx^{3}
Use the distributive property to multiply g by -6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}.
-6g-21gx^{6}-14gx-22gx^{7}-9gx^{-2}x^{2}+54gx^{2}+36gx^{3}=4fx^{4}+3fx^{3}
Swap sides so that all variable terms are on the left hand side.
\left(-6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}\right)g=4fx^{4}+3fx^{3}
Combine all terms containing g.
\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)g=4fx^{4}+3fx^{3}
The equation is in standard form.
\frac{\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)g}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}=\frac{f\left(4x+3\right)x^{3}}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}
Divide both sides by -15-14x-21x^{6}-22x^{7}+54x^{2}+36x^{3}.
g=\frac{f\left(4x+3\right)x^{3}}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}
Dividing by -15-14x-21x^{6}-22x^{7}+54x^{2}+36x^{3} undoes the multiplication by -15-14x-21x^{6}-22x^{7}+54x^{2}+36x^{3}.
g=\frac{f\left(4x+3\right)x^{3}}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}\text{, }g\neq 0
Variable g cannot be equal to 0.
\left(4x+3\right)x^{2}fx=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Multiply both sides of the equation by g\left(4x+3\right)x^{3}, the least common multiple of gx,3x^{3}+4x^{4}.
\left(4x^{3}+3x^{2}\right)fx=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x+3 by x^{2}.
\left(4x^{3}f+3x^{2}f\right)x=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x^{3}+3x^{2} by f.
4fx^{4}+3fx^{3}=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x^{3}f+3x^{2}f by x.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 3x^{3}+4x^{4} by -2x^{-3}-4x^{3}.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x^{-2}x^{3}+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
Use the distributive property to multiply x^{-2}+x^{4}-6 by 9x^{2}+6x^{3}.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x^{1}+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
Calculate x to the power of 1 and get x.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-9x^{-2}x^{2}-6x-9x^{6}-6x^{7}+54x^{2}+36x^{3}\right)
To find the opposite of 9x^{-2}x^{2}+6x+9x^{6}+6x^{7}-54x^{2}-36x^{3}, find the opposite of each term.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-14x-16x^{7}-9x^{-2}x^{2}-9x^{6}-6x^{7}+54x^{2}+36x^{3}\right)
Combine -8x and -6x to get -14x.
4fx^{4}+3fx^{3}=g\left(-6-21x^{6}-14x-16x^{7}-9x^{-2}x^{2}-6x^{7}+54x^{2}+36x^{3}\right)
Combine -12x^{6} and -9x^{6} to get -21x^{6}.
4fx^{4}+3fx^{3}=g\left(-6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}\right)
Combine -16x^{7} and -6x^{7} to get -22x^{7}.
4fx^{4}+3fx^{3}=-6g-21gx^{6}-14gx-22gx^{7}-9gx^{-2}x^{2}+54gx^{2}+36gx^{3}
Use the distributive property to multiply g by -6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}.
\left(4x^{4}+3x^{3}\right)f=-6g-21gx^{6}-14gx-22gx^{7}-9gx^{-2}x^{2}+54gx^{2}+36gx^{3}
Combine all terms containing f.
\left(4x^{4}+3x^{3}\right)f=-22gx^{7}-21gx^{6}+36gx^{3}+54gx^{2}-14gx-15g
The equation is in standard form.
\frac{\left(4x^{4}+3x^{3}\right)f}{4x^{4}+3x^{3}}=\frac{g\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)}{4x^{4}+3x^{3}}
Divide both sides by 3x^{3}+4x^{4}.
f=\frac{g\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)}{4x^{4}+3x^{3}}
Dividing by 3x^{3}+4x^{4} undoes the multiplication by 3x^{3}+4x^{4}.
f=\frac{g\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)}{\left(4x+3\right)x^{3}}
Divide g\left(-22x^{7}-15-14x-21x^{6}+54x^{2}+36x^{3}\right) by 3x^{3}+4x^{4}.
x^{2}\left(4x+3\right)fx=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g\left(4x+3\right)x^{3}, the least common multiple of gx,3x^{3}+4x^{4}.
\left(4x^{3}+3x^{2}\right)fx=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply x^{2} by 4x+3.
\left(4x^{3}f+3x^{2}f\right)x=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x^{3}+3x^{2} by f.
4fx^{4}+3fx^{3}=g\left(\left(3x^{3}+4x^{4}\right)\left(-2x^{-3}-4x^{3}\right)-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 4x^{3}f+3x^{2}f by x.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(x^{-2}+x^{4}-6\right)\left(9x^{2}+6x^{3}\right)\right)
Use the distributive property to multiply 3x^{3}+4x^{4} by -2x^{-3}-4x^{3}.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x^{-2}x^{3}+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
Use the distributive property to multiply x^{-2}+x^{4}-6 by 9x^{2}+6x^{3}.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x^{1}+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
To multiply powers of the same base, add their exponents. Add -2 and 3 to get 1.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-\left(9x^{-2}x^{2}+6x+9x^{6}+6x^{7}-54x^{2}-36x^{3}\right)\right)
Calculate x to the power of 1 and get x.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-8x-16x^{7}-9x^{-2}x^{2}-6x-9x^{6}-6x^{7}+54x^{2}+36x^{3}\right)
To find the opposite of 9x^{-2}x^{2}+6x+9x^{6}+6x^{7}-54x^{2}-36x^{3}, find the opposite of each term.
4fx^{4}+3fx^{3}=g\left(-6-12x^{6}-14x-16x^{7}-9x^{-2}x^{2}-9x^{6}-6x^{7}+54x^{2}+36x^{3}\right)
Combine -8x and -6x to get -14x.
4fx^{4}+3fx^{3}=g\left(-6-21x^{6}-14x-16x^{7}-9x^{-2}x^{2}-6x^{7}+54x^{2}+36x^{3}\right)
Combine -12x^{6} and -9x^{6} to get -21x^{6}.
4fx^{4}+3fx^{3}=g\left(-6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}\right)
Combine -16x^{7} and -6x^{7} to get -22x^{7}.
4fx^{4}+3fx^{3}=-6g-21gx^{6}-14gx-22gx^{7}-9gx^{-2}x^{2}+54gx^{2}+36gx^{3}
Use the distributive property to multiply g by -6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}.
-6g-21gx^{6}-14gx-22gx^{7}-9gx^{-2}x^{2}+54gx^{2}+36gx^{3}=4fx^{4}+3fx^{3}
Swap sides so that all variable terms are on the left hand side.
\left(-6-21x^{6}-14x-22x^{7}-9x^{-2}x^{2}+54x^{2}+36x^{3}\right)g=4fx^{4}+3fx^{3}
Combine all terms containing g.
\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)g=4fx^{4}+3fx^{3}
The equation is in standard form.
\frac{\left(-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15\right)g}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}=\frac{f\left(4x+3\right)x^{3}}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}
Divide both sides by -15-14x-21x^{6}-22x^{7}+54x^{2}+36x^{3}.
g=\frac{f\left(4x+3\right)x^{3}}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}
Dividing by -15-14x-21x^{6}-22x^{7}+54x^{2}+36x^{3} undoes the multiplication by -15-14x-21x^{6}-22x^{7}+54x^{2}+36x^{3}.
g=\frac{f\left(4x+3\right)x^{3}}{-22x^{7}-21x^{6}+36x^{3}+54x^{2}-14x-15}\text{, }g\neq 0
Variable g cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}