Solve for f
f=4hx+2h^{2}-5
h\neq 0
Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{\sqrt{4x^{2}+2f+10}}{2}-x\text{, }&\left(arg(x)\geq \pi \text{ and }x\neq 0\right)\text{ or }f\neq -5\\h=-\frac{\sqrt{4x^{2}+2f+10}}{2}-x\text{, }&\left(arg(x)<\pi \text{ and }x\neq 0\right)\text{ or }f\neq -5\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{\sqrt{4x^{2}+2f+10}}{2}-x\text{, }&\left(f\neq -5\text{ or }x<0\right)\text{ and }f\geq -2x^{2}-5\\h=-\frac{\sqrt{4x^{2}+2f+10}}{2}-x\text{, }&\left(f\neq -5\text{ or }x>0\right)\text{ and }f\geq -2x^{2}-5\end{matrix}\right.
Graph
Share
Copied to clipboard
f\left(x+h\right)-fx=h\left(2\left(x+h\right)^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Multiply both sides of the equation by h.
fx+fh-fx=h\left(2\left(x+h\right)^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply f by x+h.
fh=h\left(2\left(x+h\right)^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Combine fx and -fx to get 0.
fh=h\left(2\left(x^{2}+2xh+h^{2}\right)-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
fh=h\left(2x^{2}+4xh+2h^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply 2 by x^{2}+2xh+h^{2}.
fh=h\left(2x^{2}+4xh+2h^{2}-5x-5+1\right)-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply -5 by x+1.
fh=h\left(2x^{2}+4xh+2h^{2}-5x-4\right)-h\left(2x^{2}-5x+1\right)
Add -5 and 1 to get -4.
fh=2hx^{2}+4xh^{2}+2h^{3}-5hx-4h-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply h by 2x^{2}+4xh+2h^{2}-5x-4.
fh=2hx^{2}+4xh^{2}+2h^{3}-5hx-4h-\left(2hx^{2}-5hx+h\right)
Use the distributive property to multiply h by 2x^{2}-5x+1.
fh=2hx^{2}+4xh^{2}+2h^{3}-5hx-4h-2hx^{2}+5hx-h
To find the opposite of 2hx^{2}-5hx+h, find the opposite of each term.
fh=4xh^{2}+2h^{3}-5hx-4h+5hx-h
Combine 2hx^{2} and -2hx^{2} to get 0.
fh=4xh^{2}+2h^{3}-4h-h
Combine -5hx and 5hx to get 0.
fh=4xh^{2}+2h^{3}-5h
Combine -4h and -h to get -5h.
hf=4xh^{2}+2h^{3}-5h
The equation is in standard form.
\frac{hf}{h}=\frac{h\left(4hx+2h^{2}-5\right)}{h}
Divide both sides by h.
f=\frac{h\left(4hx+2h^{2}-5\right)}{h}
Dividing by h undoes the multiplication by h.
f=4hx+2h^{2}-5
Divide h\left(4xh+2h^{2}-5\right) by h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}