Skip to main content
Solve for f
Tick mark Image
Solve for h (complex solution)
Tick mark Image
Solve for h
Tick mark Image
Graph

Similar Problems from Web Search

Share

f\left(x+h\right)-fx=h\left(2\left(x+h\right)^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Multiply both sides of the equation by h.
fx+fh-fx=h\left(2\left(x+h\right)^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply f by x+h.
fh=h\left(2\left(x+h\right)^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Combine fx and -fx to get 0.
fh=h\left(2\left(x^{2}+2xh+h^{2}\right)-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+h\right)^{2}.
fh=h\left(2x^{2}+4xh+2h^{2}-5\left(x+1\right)+1\right)-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply 2 by x^{2}+2xh+h^{2}.
fh=h\left(2x^{2}+4xh+2h^{2}-5x-5+1\right)-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply -5 by x+1.
fh=h\left(2x^{2}+4xh+2h^{2}-5x-4\right)-h\left(2x^{2}-5x+1\right)
Add -5 and 1 to get -4.
fh=2hx^{2}+4xh^{2}+2h^{3}-5hx-4h-h\left(2x^{2}-5x+1\right)
Use the distributive property to multiply h by 2x^{2}+4xh+2h^{2}-5x-4.
fh=2hx^{2}+4xh^{2}+2h^{3}-5hx-4h-\left(2hx^{2}-5hx+h\right)
Use the distributive property to multiply h by 2x^{2}-5x+1.
fh=2hx^{2}+4xh^{2}+2h^{3}-5hx-4h-2hx^{2}+5hx-h
To find the opposite of 2hx^{2}-5hx+h, find the opposite of each term.
fh=4xh^{2}+2h^{3}-5hx-4h+5hx-h
Combine 2hx^{2} and -2hx^{2} to get 0.
fh=4xh^{2}+2h^{3}-4h-h
Combine -5hx and 5hx to get 0.
fh=4xh^{2}+2h^{3}-5h
Combine -4h and -h to get -5h.
hf=4xh^{2}+2h^{3}-5h
The equation is in standard form.
\frac{hf}{h}=\frac{h\left(4hx+2h^{2}-5\right)}{h}
Divide both sides by h.
f=\frac{h\left(4hx+2h^{2}-5\right)}{h}
Dividing by h undoes the multiplication by h.
f=4hx+2h^{2}-5
Divide h\left(4xh+2h^{2}-5\right) by h.