Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. f
Tick mark Image

Similar Problems from Web Search

Share

\frac{f\times 2\pi -\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}}
Express f\times \frac{3\pi }{2} as a single fraction.
\frac{\frac{2f\times 2\pi }{2}-\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply f\times 2\pi times \frac{2}{2}.
\frac{\frac{2f\times 2\pi -f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}}
Since \frac{2f\times 2\pi }{2} and \frac{f\times 3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4f\pi -3f\pi }{2}}{2\pi -\frac{3\pi }{2}}
Do the multiplications in 2f\times 2\pi -f\times 3\pi .
\frac{\frac{f\pi }{2}}{2\pi -\frac{3\pi }{2}}
Combine like terms in 4f\pi -3f\pi .
\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi }{2}-\frac{3\pi }{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\pi times \frac{2}{2}.
\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi -3\pi }{2}}
Since \frac{2\times 2\pi }{2} and \frac{3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{f\pi }{2}}{\frac{4\pi -3\pi }{2}}
Do the multiplications in 2\times 2\pi -3\pi .
\frac{\frac{f\pi }{2}}{\frac{\pi }{2}}
Combine like terms in 4\pi -3\pi .
\frac{f\pi \times 2}{2\pi }
Divide \frac{f\pi }{2} by \frac{\pi }{2} by multiplying \frac{f\pi }{2} by the reciprocal of \frac{\pi }{2}.
f
Cancel out 2\pi in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{f\times 2\pi -\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}})
Express f\times \frac{3\pi }{2} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{2f\times 2\pi }{2}-\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply f\times 2\pi times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{2f\times 2\pi -f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}})
Since \frac{2f\times 2\pi }{2} and \frac{f\times 3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{4f\pi -3f\pi }{2}}{2\pi -\frac{3\pi }{2}})
Do the multiplications in 2f\times 2\pi -f\times 3\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{2\pi -\frac{3\pi }{2}})
Combine like terms in 4f\pi -3f\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi }{2}-\frac{3\pi }{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\pi times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi -3\pi }{2}})
Since \frac{2\times 2\pi }{2} and \frac{3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{4\pi -3\pi }{2}})
Do the multiplications in 2\times 2\pi -3\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{\pi }{2}})
Combine like terms in 4\pi -3\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{f\pi \times 2}{2\pi })
Divide \frac{f\pi }{2} by \frac{\pi }{2} by multiplying \frac{f\pi }{2} by the reciprocal of \frac{\pi }{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(f)
Cancel out 2\pi in both numerator and denominator.
f^{1-1}
The derivative of ax^{n} is nax^{n-1}.
f^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.