Evaluate
f
Differentiate w.r.t. f
1
Share
Copied to clipboard
\frac{f\times 2\pi -\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}}
Express f\times \frac{3\pi }{2} as a single fraction.
\frac{\frac{2f\times 2\pi }{2}-\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply f\times 2\pi times \frac{2}{2}.
\frac{\frac{2f\times 2\pi -f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}}
Since \frac{2f\times 2\pi }{2} and \frac{f\times 3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4f\pi -3f\pi }{2}}{2\pi -\frac{3\pi }{2}}
Do the multiplications in 2f\times 2\pi -f\times 3\pi .
\frac{\frac{f\pi }{2}}{2\pi -\frac{3\pi }{2}}
Combine like terms in 4f\pi -3f\pi .
\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi }{2}-\frac{3\pi }{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\pi times \frac{2}{2}.
\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi -3\pi }{2}}
Since \frac{2\times 2\pi }{2} and \frac{3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{f\pi }{2}}{\frac{4\pi -3\pi }{2}}
Do the multiplications in 2\times 2\pi -3\pi .
\frac{\frac{f\pi }{2}}{\frac{\pi }{2}}
Combine like terms in 4\pi -3\pi .
\frac{f\pi \times 2}{2\pi }
Divide \frac{f\pi }{2} by \frac{\pi }{2} by multiplying \frac{f\pi }{2} by the reciprocal of \frac{\pi }{2}.
f
Cancel out 2\pi in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{f\times 2\pi -\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}})
Express f\times \frac{3\pi }{2} as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{2f\times 2\pi }{2}-\frac{f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply f\times 2\pi times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{2f\times 2\pi -f\times 3\pi }{2}}{2\pi -\frac{3\pi }{2}})
Since \frac{2f\times 2\pi }{2} and \frac{f\times 3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{4f\pi -3f\pi }{2}}{2\pi -\frac{3\pi }{2}})
Do the multiplications in 2f\times 2\pi -f\times 3\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{2\pi -\frac{3\pi }{2}})
Combine like terms in 4f\pi -3f\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi }{2}-\frac{3\pi }{2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\pi times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{2\times 2\pi -3\pi }{2}})
Since \frac{2\times 2\pi }{2} and \frac{3\pi }{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{4\pi -3\pi }{2}})
Do the multiplications in 2\times 2\pi -3\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{\frac{f\pi }{2}}{\frac{\pi }{2}})
Combine like terms in 4\pi -3\pi .
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{f\pi \times 2}{2\pi })
Divide \frac{f\pi }{2} by \frac{\pi }{2} by multiplying \frac{f\pi }{2} by the reciprocal of \frac{\pi }{2}.
\frac{\mathrm{d}}{\mathrm{d}f}(f)
Cancel out 2\pi in both numerator and denominator.
f^{1-1}
The derivative of ax^{n} is nax^{n-1}.
f^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}