\frac { d y } { y } = \frac { d x } { 4 x - x ^ { 2 } }
Solve for d
\left\{\begin{matrix}d=0\text{, }&y\neq 0\text{ and }x\neq 4\text{ and }x\neq 0\\d\in \mathrm{R}\text{, }&y\neq 0\text{ and }x=3\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=3\text{, }&y\neq 0\\x\in \mathrm{R}\setminus 4,0\text{, }&d=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
x\left(x-4\right)dy=-ydx
Multiply both sides of the equation by xy\left(x-4\right), the least common multiple of y,4x-x^{2}.
\left(x^{2}-4x\right)dy=-ydx
Use the distributive property to multiply x by x-4.
\left(x^{2}d-4xd\right)y=-ydx
Use the distributive property to multiply x^{2}-4x by d.
x^{2}dy-4xdy=-ydx
Use the distributive property to multiply x^{2}d-4xd by y.
x^{2}dy-4xdy+ydx=0
Add ydx to both sides.
x^{2}dy-3xdy=0
Combine -4xdy and ydx to get -3xdy.
\left(x^{2}y-3xy\right)d=0
Combine all terms containing d.
\left(yx^{2}-3xy\right)d=0
The equation is in standard form.
d=0
Divide 0 by x^{2}y-3xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}