\frac { d y } { d x } = x d x + y
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{y}{x^{2}}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{y}{x^{2}}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-id^{-\frac{1}{2}}\sqrt{y}\text{; }x=id^{-\frac{1}{2}}\sqrt{y}\text{, }&d\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\sqrt{-\frac{y}{d}}\text{; }x=-\sqrt{-\frac{y}{d}}\text{, }&\left(d>0\text{ and }y\leq 0\right)\text{ or }\left(y\geq 0\text{ and }d<0\right)\\x\in \mathrm{R}\text{, }&y=0\text{ and }d=0\end{matrix}\right.
Share
Copied to clipboard
\frac{\mathrm{d}(y)}{\mathrm{d}x}=x^{2}d+y
Multiply x and x to get x^{2}.
x^{2}d+y=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
x^{2}d=\frac{\mathrm{d}(y)}{\mathrm{d}x}-y
Subtract y from both sides.
x^{2}d=-y
The equation is in standard form.
\frac{x^{2}d}{x^{2}}=-\frac{y}{x^{2}}
Divide both sides by x^{2}.
d=-\frac{y}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
\frac{\mathrm{d}(y)}{\mathrm{d}x}=x^{2}d+y
Multiply x and x to get x^{2}.
x^{2}d+y=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
x^{2}d=\frac{\mathrm{d}(y)}{\mathrm{d}x}-y
Subtract y from both sides.
x^{2}d=-y
The equation is in standard form.
\frac{x^{2}d}{x^{2}}=-\frac{y}{x^{2}}
Divide both sides by x^{2}.
d=-\frac{y}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}