Skip to main content
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}(y)}{\mathrm{d}x}=ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy
Use the distributive property to multiply ae^{\left(-b\right)x} by c-dy.
ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
-adye^{-bx}+ace^{-bx}=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Reorder the terms.
\left(-dye^{-bx}+ce^{-bx}\right)a=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Combine all terms containing a.
\frac{c-dy}{e^{bx}}a=0
The equation is in standard form.
a=0
Divide 0 by -dye^{-bx}+ce^{-bx}.
\frac{\mathrm{d}(y)}{\mathrm{d}x}=ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy
Use the distributive property to multiply ae^{\left(-b\right)x} by c-dy.
ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
-adye^{-bx}+ace^{-bx}=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Reorder the terms.
\left(-ady+ac\right)e^{-bx}=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Combine all terms containing b.
\left(ac-ady\right)e^{\left(-x\right)b}=0
Use the rules of exponents and logarithms to solve the equation.
e^{\left(-x\right)b}=0
Divide both sides by -ady+ac.
\log(e^{\left(-x\right)b})=\log(0)
Take the logarithm of both sides of the equation.
\left(-x\right)b\log(e)=\log(0)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-x\right)b=\frac{\log(0)}{\log(e)}
Divide both sides by \log(e).
\left(-x\right)b=\log_{e}\left(0\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
b=\text{Indeterminate}
Divide both sides by -x.