\frac { d y } { d x } = a e ^ { - b x } ( c - d y )
Solve for a
\left\{\begin{matrix}\\a=0\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&c=dy\end{matrix}\right.
Solve for b
b\in \mathrm{R}
a=0\text{ or }\left(y=0\text{ and }c=0\right)\text{ or }\left(d=\frac{c}{y}\text{ and }y\neq 0\right)
Share
Copied to clipboard
\frac{\mathrm{d}(y)}{\mathrm{d}x}=ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy
Use the distributive property to multiply ae^{\left(-b\right)x} by c-dy.
ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
-adye^{-bx}+ace^{-bx}=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Reorder the terms.
\left(-dye^{-bx}+ce^{-bx}\right)a=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Combine all terms containing a.
\frac{c-dy}{e^{bx}}a=0
The equation is in standard form.
a=0
Divide 0 by -dye^{-bx}+ce^{-bx}.
\frac{\mathrm{d}(y)}{\mathrm{d}x}=ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy
Use the distributive property to multiply ae^{\left(-b\right)x} by c-dy.
ae^{\left(-b\right)x}c-ae^{\left(-b\right)x}dy=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Swap sides so that all variable terms are on the left hand side.
-adye^{-bx}+ace^{-bx}=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Reorder the terms.
\left(-ady+ac\right)e^{-bx}=\frac{\mathrm{d}(y)}{\mathrm{d}x}
Combine all terms containing b.
\left(ac-ady\right)e^{\left(-x\right)b}=0
Use the rules of exponents and logarithms to solve the equation.
e^{\left(-x\right)b}=0
Divide both sides by -ady+ac.
\log(e^{\left(-x\right)b})=\log(0)
Take the logarithm of both sides of the equation.
\left(-x\right)b\log(e)=\log(0)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\left(-x\right)b=\frac{\log(0)}{\log(e)}
Divide both sides by \log(e).
\left(-x\right)b=\log_{e}\left(0\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
b=\text{Indeterminate}
Divide both sides by -x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}