Solve for A
\left\{\begin{matrix}A=\frac{u-T_{0}}{\sin(t\omega )}\text{, }&\omega \neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }t=\frac{\pi n_{1}}{\omega }\\A\in \mathrm{R}\text{, }&\left(u=T_{0}\text{ and }\omega =0\right)\text{ or }\left(\exists n_{1}\in \mathrm{Z}\text{ : }t=\frac{\pi n_{1}}{\omega }\text{ and }u=T_{0}\right)\text{ or }k=0\end{matrix}\right.
Solve for T_0
\left\{\begin{matrix}\\T_{0}=-A\sin(t\omega )+u\text{, }&\text{unconditionally}\\T_{0}\in \mathrm{R}\text{, }&k=0\end{matrix}\right.
Share
Copied to clipboard
\left(-k\right)\left(u-T_{0}-A\sin(\omega t)\right)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Swap sides so that all variable terms are on the left hand side.
-ku+T_{0}k+Ak\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Use the distributive property to multiply -k by u-T_{0}-A\sin(\omega t).
T_{0}k+Ak\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku
Add ku to both sides.
Ak\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku-T_{0}k
Subtract T_{0}k from both sides.
k\sin(t\omega )A=ku-T_{0}k
The equation is in standard form.
\frac{k\sin(t\omega )A}{k\sin(t\omega )}=\frac{k\left(u-T_{0}\right)}{k\sin(t\omega )}
Divide both sides by k\sin(\omega t).
A=\frac{k\left(u-T_{0}\right)}{k\sin(t\omega )}
Dividing by k\sin(\omega t) undoes the multiplication by k\sin(\omega t).
A=\frac{u-T_{0}}{\sin(t\omega )}
Divide k\left(u-T_{0}\right) by k\sin(\omega t).
\left(-k\right)\left(u-T_{0}-A\sin(\omega t)\right)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Swap sides so that all variable terms are on the left hand side.
-ku+T_{0}k+kA\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Use the distributive property to multiply -k by u-T_{0}-A\sin(\omega t).
T_{0}k+kA\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku
Add ku to both sides.
T_{0}k=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku-kA\sin(\omega t)
Subtract kA\sin(\omega t) from both sides.
kT_{0}=-Ak\sin(t\omega )+ku
The equation is in standard form.
\frac{kT_{0}}{k}=\frac{k\left(-A\sin(t\omega )+u\right)}{k}
Divide both sides by k.
T_{0}=\frac{k\left(-A\sin(t\omega )+u\right)}{k}
Dividing by k undoes the multiplication by k.
T_{0}=-A\sin(t\omega )+u
Divide k\left(u-A\sin(\omega t)\right) by k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}