Skip to main content
Solve for A
Tick mark Image
Solve for T_0
Tick mark Image

Similar Problems from Web Search

Share

\left(-k\right)\left(u-T_{0}-A\sin(\omega t)\right)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Swap sides so that all variable terms are on the left hand side.
-ku+T_{0}k+Ak\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Use the distributive property to multiply -k by u-T_{0}-A\sin(\omega t).
T_{0}k+Ak\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku
Add ku to both sides.
Ak\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku-T_{0}k
Subtract T_{0}k from both sides.
k\sin(t\omega )A=ku-T_{0}k
The equation is in standard form.
\frac{k\sin(t\omega )A}{k\sin(t\omega )}=\frac{k\left(u-T_{0}\right)}{k\sin(t\omega )}
Divide both sides by k\sin(\omega t).
A=\frac{k\left(u-T_{0}\right)}{k\sin(t\omega )}
Dividing by k\sin(\omega t) undoes the multiplication by k\sin(\omega t).
A=\frac{u-T_{0}}{\sin(t\omega )}
Divide k\left(u-T_{0}\right) by k\sin(\omega t).
\left(-k\right)\left(u-T_{0}-A\sin(\omega t)\right)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Swap sides so that all variable terms are on the left hand side.
-ku+T_{0}k+kA\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)
Use the distributive property to multiply -k by u-T_{0}-A\sin(\omega t).
T_{0}k+kA\sin(\omega t)=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku
Add ku to both sides.
T_{0}k=\frac{\mathrm{d}}{\mathrm{d}t}(u)+ku-kA\sin(\omega t)
Subtract kA\sin(\omega t) from both sides.
kT_{0}=-Ak\sin(t\omega )+ku
The equation is in standard form.
\frac{kT_{0}}{k}=\frac{k\left(-A\sin(t\omega )+u\right)}{k}
Divide both sides by k.
T_{0}=\frac{k\left(-A\sin(t\omega )+u\right)}{k}
Dividing by k undoes the multiplication by k.
T_{0}=-A\sin(t\omega )+u
Divide k\left(u-A\sin(\omega t)\right) by k.