Solve for I
\left\{\begin{matrix}I=-\frac{Nv}{\beta }\text{, }&\beta \neq 0\text{ and }S\neq 0\text{ and }N\neq 0\\I\in \mathrm{R}\text{, }&\left(S=0\text{ and }N\neq 0\right)\text{ or }\left(v=0\text{ and }\beta =0\text{ and }N\neq 0\right)\end{matrix}\right.
Solve for N
\left\{\begin{matrix}N=-\frac{I\beta }{v}\text{, }&I\neq 0\text{ and }\beta \neq 0\text{ and }v\neq 0\text{ and }S\neq 0\\N\neq 0\text{, }&\left(\beta =0\text{ and }v=0\right)\text{ or }\left(I=0\text{ and }v=0\right)\text{ or }S=0\end{matrix}\right.
Share
Copied to clipboard
N\frac{\mathrm{d}}{\mathrm{d}t}(S)=\left(-\beta \right)SI-vSN
Multiply both sides of the equation by N.
\left(-\beta \right)SI-vSN=N\frac{\mathrm{d}}{\mathrm{d}t}(S)
Swap sides so that all variable terms are on the left hand side.
\left(-\beta \right)SI=N\frac{\mathrm{d}}{\mathrm{d}t}(S)+vSN
Add vSN to both sides.
-IS\beta =N\frac{\mathrm{d}}{\mathrm{d}t}(S)+NSv
Reorder the terms.
\left(-S\beta \right)I=NSv
The equation is in standard form.
\frac{\left(-S\beta \right)I}{-S\beta }=\frac{NSv}{-S\beta }
Divide both sides by -S\beta .
I=\frac{NSv}{-S\beta }
Dividing by -S\beta undoes the multiplication by -S\beta .
I=-\frac{Nv}{\beta }
Divide NSv by -S\beta .
N\frac{\mathrm{d}}{\mathrm{d}t}(S)=\left(-\beta \right)SI-vSN
Variable N cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by N.
N\frac{\mathrm{d}}{\mathrm{d}t}(S)+vSN=\left(-\beta \right)SI
Add vSN to both sides.
N\frac{\mathrm{d}}{\mathrm{d}t}(S)+NSv=-IS\beta
Reorder the terms.
\left(\frac{\mathrm{d}}{\mathrm{d}t}(S)+Sv\right)N=-IS\beta
Combine all terms containing N.
SvN=-IS\beta
The equation is in standard form.
\frac{SvN}{Sv}=-\frac{IS\beta }{Sv}
Divide both sides by Sv.
N=-\frac{IS\beta }{Sv}
Dividing by Sv undoes the multiplication by Sv.
N=-\frac{I\beta }{v}
Divide -IS\beta by Sv.
N=-\frac{I\beta }{v}\text{, }N\neq 0
Variable N cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}