\frac { d } { d x ^ { 2 } } = 3
Solve for d (complex solution)
d\neq 0
x=-\frac{\sqrt{3}}{3}\text{ or }x=\frac{\sqrt{3}}{3}
Solve for d
d\neq 0
x = \frac{\sqrt{3}}{3} = 0.5773502691896257
Solve for x (complex solution)
x = -\frac{\sqrt{3}}{3} = -0.5773502691896257
x=\frac{\sqrt{3}}{3}\text{, }d\neq 0
Solve for x
x = \frac{\sqrt{3}}{3} = 0.5773502691896257
x=-\frac{\sqrt{3}}{3}\text{, }d\neq 0
Graph
Share
Copied to clipboard
d=3dx^{2}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dx^{2}.
d-3dx^{2}=0
Subtract 3dx^{2} from both sides.
\left(1-3x^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -3x^{2}+1.
d\in \emptyset
Variable d cannot be equal to 0.
d=3dx^{2}
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dx^{2}.
d-3dx^{2}=0
Subtract 3dx^{2} from both sides.
\left(1-3x^{2}\right)d=0
Combine all terms containing d.
d=0
Divide 0 by -3x^{2}+1.
d\in \emptyset
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}