\frac { d } { d x ^ { 2 } } + x \frac { d y } { d x } + x y = 0
Solve for d
d\neq 0
x=-\frac{1}{\sqrt[3]{y}}\text{ and }y\neq 0
Solve for x
x=-\frac{1}{\sqrt[3]{y}}
y\neq 0\text{ and }d\neq 0
Share
Copied to clipboard
d+x\frac{\mathrm{d}(y)}{\mathrm{d}x}dx^{2}+xydx^{2}=0
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by dx^{2}.
d+x^{3}\frac{\mathrm{d}(y)}{\mathrm{d}x}d+xydx^{2}=0
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
d+x^{3}\frac{\mathrm{d}(y)}{\mathrm{d}x}d+x^{3}yd=0
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(1+x^{3}\frac{\mathrm{d}(y)}{\mathrm{d}x}+x^{3}y\right)d=0
Combine all terms containing d.
\left(yx^{3}+1\right)d=0
The equation is in standard form.
d=0
Divide 0 by 1+x^{3}y.
d\in \emptyset
Variable d cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}