Skip to main content
Solve for A
Tick mark Image
Solve for B
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}=e^{3x}Ax^{3}+x^{2}e^{3x}B
Use the distributive property to multiply x^{2}e^{3x} by Ax+B.
e^{3x}Ax^{3}+x^{2}e^{3x}B=\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}
Swap sides so that all variable terms are on the left hand side.
e^{3x}Ax^{3}=\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}-x^{2}e^{3x}B
Subtract x^{2}e^{3x}B from both sides.
Ax^{3}e^{3x}=\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}-Bx^{2}e^{3x}
Reorder the terms.
x^{3}e^{3x}A=-Bx^{2}e^{3x}
The equation is in standard form.
\frac{x^{3}e^{3x}A}{x^{3}e^{3x}}=-\frac{Bx^{2}e^{3x}}{x^{3}e^{3x}}
Divide both sides by x^{3}e^{3x}.
A=-\frac{Bx^{2}e^{3x}}{x^{3}e^{3x}}
Dividing by x^{3}e^{3x} undoes the multiplication by x^{3}e^{3x}.
A=-\frac{B}{x}
Divide -Bx^{2}e^{3x} by x^{3}e^{3x}.
\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}=e^{3x}Ax^{3}+x^{2}e^{3x}B
Use the distributive property to multiply x^{2}e^{3x} by Ax+B.
e^{3x}Ax^{3}+x^{2}e^{3x}B=\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}
Swap sides so that all variable terms are on the left hand side.
x^{2}e^{3x}B=\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}-e^{3x}Ax^{3}
Subtract e^{3x}Ax^{3} from both sides.
Bx^{2}e^{3x}=\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}-Ax^{3}e^{3x}
Reorder the terms.
x^{2}e^{3x}B=-Ax^{3}e^{3x}
The equation is in standard form.
\frac{x^{2}e^{3x}B}{x^{2}e^{3x}}=-\frac{Ax^{3}e^{3x}}{x^{2}e^{3x}}
Divide both sides by x^{2}e^{3x}.
B=-\frac{Ax^{3}e^{3x}}{x^{2}e^{3x}}
Dividing by x^{2}e^{3x} undoes the multiplication by x^{2}e^{3x}.
B=-Ax
Divide -Ax^{3}e^{3x} by x^{2}e^{3x}.