Evaluate
c+d
Differentiate w.r.t. d
1
Share
Copied to clipboard
\frac{-d^{2}}{c-d}+\frac{c^{2}}{c-d}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of d-c and c-d is c-d. Multiply \frac{d^{2}}{d-c} times \frac{-1}{-1}.
\frac{-d^{2}+c^{2}}{c-d}
Since \frac{-d^{2}}{c-d} and \frac{c^{2}}{c-d} have the same denominator, add them by adding their numerators.
\frac{\left(-c+d\right)\left(-c-d\right)}{c-d}
Factor the expressions that are not already factored in \frac{-d^{2}+c^{2}}{c-d}.
\frac{-\left(c-d\right)\left(-c-d\right)}{c-d}
Extract the negative sign in d-c.
-\left(-c-d\right)
Cancel out c-d in both numerator and denominator.
c+d
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}