\frac { d ^ { 2 } \psi } { d \varphi ^ { 2 } } = q \psi
Solve for q (complex solution)
\left\{\begin{matrix}\\q=0\text{, }&\text{unconditionally}\\q\in \mathrm{C}\text{, }&\psi =0\end{matrix}\right.
Solve for q
\left\{\begin{matrix}\\q=0\text{, }&\text{unconditionally}\\q\in \mathrm{R}\text{, }&\psi =0\end{matrix}\right.
Solve for φ (complex solution)
\phi \in \mathrm{C}
\psi =0\text{ or }q=0
Solve for φ
\phi \in \mathrm{R}
\psi =0\text{ or }q=0
Share
Copied to clipboard
q\psi =\frac{\mathrm{d}(\psi )}{\mathrm{d}\phi ^{2}}
Swap sides so that all variable terms are on the left hand side.
\psi q=0
The equation is in standard form.
q=0
Divide 0 by \psi .
q\psi =\frac{\mathrm{d}(\psi )}{\mathrm{d}\phi ^{2}}
Swap sides so that all variable terms are on the left hand side.
\psi q=0
The equation is in standard form.
q=0
Divide 0 by \psi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}