Solve for a
a=-\frac{yb^{2}}{c\left(b-y\right)}
b\neq 0\text{ and }y\neq 0\text{ and }y\neq b\text{ and }c\neq 0
Solve for b (complex solution)
b=\frac{\sqrt{ac\left(4y^{2}+ac\right)}-ac}{2y}
b=-\frac{\sqrt{ac\left(4y^{2}+ac\right)}+ac}{2y}\text{, }y\neq 0\text{ and }a\neq 0\text{ and }c\neq 0
Share
Copied to clipboard
abc+byb=ayc
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by aby, the least common multiple of y,a,b.
abc+b^{2}y=ayc
Multiply b and b to get b^{2}.
abc+b^{2}y-ayc=0
Subtract ayc from both sides.
abc-ayc=-b^{2}y
Subtract b^{2}y from both sides. Anything subtracted from zero gives its negation.
\left(bc-yc\right)a=-b^{2}y
Combine all terms containing a.
\left(bc-cy\right)a=-yb^{2}
The equation is in standard form.
\frac{\left(bc-cy\right)a}{bc-cy}=-\frac{yb^{2}}{bc-cy}
Divide both sides by -cy+bc.
a=-\frac{yb^{2}}{bc-cy}
Dividing by -cy+bc undoes the multiplication by -cy+bc.
a=-\frac{yb^{2}}{c\left(b-y\right)}
Divide -b^{2}y by -cy+bc.
a=-\frac{yb^{2}}{c\left(b-y\right)}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}