Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)}+\frac{2b}{a\left(a+2b\right)}-\frac{b}{ac-3a^{2}}
Factor ac+2bc-6ab-3a^{2}. Factor a^{2}+2ab.
\frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)}+\frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-2b\right)\left(3a-c\right) and a\left(a+2b\right) is a\left(-3a+c\right)\left(-a-2b\right). Multiply \frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)} times \frac{-a}{-a}. Multiply \frac{2b}{a\left(a+2b\right)} times \frac{-\left(-3a+c\right)}{-\left(-3a+c\right)}.
\frac{\left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Since \frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)} and \frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)} have the same denominator, add them by adding their numerators.
\frac{-ca-6ba+6ba-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Do the multiplications in \left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right).
\frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Combine like terms in -ca-6ba+6ba-2bc.
\frac{c\left(-a-2b\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Factor the expressions that are not already factored in \frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{ac-3a^{2}}
Cancel out -a-2b in both numerator and denominator.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{a\left(-3a+c\right)}
Factor ac-3a^{2}.
\frac{c-b}{a\left(-3a+c\right)}
Since \frac{c}{a\left(-3a+c\right)} and \frac{b}{a\left(-3a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{c-b}{-3a^{2}+ac}
Expand a\left(-3a+c\right).
\frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)}+\frac{2b}{a\left(a+2b\right)}-\frac{b}{ac-3a^{2}}
Factor ac+2bc-6ab-3a^{2}. Factor a^{2}+2ab.
\frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)}+\frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-2b\right)\left(3a-c\right) and a\left(a+2b\right) is a\left(-3a+c\right)\left(-a-2b\right). Multiply \frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)} times \frac{-a}{-a}. Multiply \frac{2b}{a\left(a+2b\right)} times \frac{-\left(-3a+c\right)}{-\left(-3a+c\right)}.
\frac{\left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Since \frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)} and \frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)} have the same denominator, add them by adding their numerators.
\frac{-ca-6ba+6ba-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Do the multiplications in \left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right).
\frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Combine like terms in -ca-6ba+6ba-2bc.
\frac{c\left(-a-2b\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Factor the expressions that are not already factored in \frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{ac-3a^{2}}
Cancel out -a-2b in both numerator and denominator.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{a\left(-3a+c\right)}
Factor ac-3a^{2}.
\frac{c-b}{a\left(-3a+c\right)}
Since \frac{c}{a\left(-3a+c\right)} and \frac{b}{a\left(-3a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{c-b}{-3a^{2}+ac}
Expand a\left(-3a+c\right).