Evaluate
-\frac{c-b}{a\left(3a-c\right)}
Expand
\frac{b-c}{a\left(3a-c\right)}
Share
Copied to clipboard
\frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)}+\frac{2b}{a\left(a+2b\right)}-\frac{b}{ac-3a^{2}}
Factor ac+2bc-6ab-3a^{2}. Factor a^{2}+2ab.
\frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)}+\frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-2b\right)\left(3a-c\right) and a\left(a+2b\right) is a\left(-3a+c\right)\left(-a-2b\right). Multiply \frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)} times \frac{-a}{-a}. Multiply \frac{2b}{a\left(a+2b\right)} times \frac{-\left(-3a+c\right)}{-\left(-3a+c\right)}.
\frac{\left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Since \frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)} and \frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)} have the same denominator, add them by adding their numerators.
\frac{-ca-6ba+6ba-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Do the multiplications in \left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right).
\frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Combine like terms in -ca-6ba+6ba-2bc.
\frac{c\left(-a-2b\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Factor the expressions that are not already factored in \frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{ac-3a^{2}}
Cancel out -a-2b in both numerator and denominator.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{a\left(-3a+c\right)}
Factor ac-3a^{2}.
\frac{c-b}{a\left(-3a+c\right)}
Since \frac{c}{a\left(-3a+c\right)} and \frac{b}{a\left(-3a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{c-b}{-3a^{2}+ac}
Expand a\left(-3a+c\right).
\frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)}+\frac{2b}{a\left(a+2b\right)}-\frac{b}{ac-3a^{2}}
Factor ac+2bc-6ab-3a^{2}. Factor a^{2}+2ab.
\frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)}+\frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-2b\right)\left(3a-c\right) and a\left(a+2b\right) is a\left(-3a+c\right)\left(-a-2b\right). Multiply \frac{c+6b}{\left(-a-2b\right)\left(3a-c\right)} times \frac{-a}{-a}. Multiply \frac{2b}{a\left(a+2b\right)} times \frac{-\left(-3a+c\right)}{-\left(-3a+c\right)}.
\frac{\left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Since \frac{\left(c+6b\right)\left(-1\right)a}{a\left(-3a+c\right)\left(-a-2b\right)} and \frac{2b\left(-1\right)\left(-3a+c\right)}{a\left(-3a+c\right)\left(-a-2b\right)} have the same denominator, add them by adding their numerators.
\frac{-ca-6ba+6ba-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Do the multiplications in \left(c+6b\right)\left(-1\right)a+2b\left(-1\right)\left(-3a+c\right).
\frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Combine like terms in -ca-6ba+6ba-2bc.
\frac{c\left(-a-2b\right)}{a\left(-3a+c\right)\left(-a-2b\right)}-\frac{b}{ac-3a^{2}}
Factor the expressions that are not already factored in \frac{-ca-2bc}{a\left(-3a+c\right)\left(-a-2b\right)}.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{ac-3a^{2}}
Cancel out -a-2b in both numerator and denominator.
\frac{c}{a\left(-3a+c\right)}-\frac{b}{a\left(-3a+c\right)}
Factor ac-3a^{2}.
\frac{c-b}{a\left(-3a+c\right)}
Since \frac{c}{a\left(-3a+c\right)} and \frac{b}{a\left(-3a+c\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{c-b}{-3a^{2}+ac}
Expand a\left(-3a+c\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}