Solve for c
c=-2
Share
Copied to clipboard
\left(c+5\right)\left(c+4\right)=\left(c+8\right)\left(c+3\right)
Variable c cannot be equal to any of the values -8,-5 since division by zero is not defined. Multiply both sides of the equation by \left(c+5\right)\left(c+8\right), the least common multiple of c+8,c+5.
c^{2}+9c+20=\left(c+8\right)\left(c+3\right)
Use the distributive property to multiply c+5 by c+4 and combine like terms.
c^{2}+9c+20=c^{2}+11c+24
Use the distributive property to multiply c+8 by c+3 and combine like terms.
c^{2}+9c+20-c^{2}=11c+24
Subtract c^{2} from both sides.
9c+20=11c+24
Combine c^{2} and -c^{2} to get 0.
9c+20-11c=24
Subtract 11c from both sides.
-2c+20=24
Combine 9c and -11c to get -2c.
-2c=24-20
Subtract 20 from both sides.
-2c=4
Subtract 20 from 24 to get 4.
c=\frac{4}{-2}
Divide both sides by -2.
c=-2
Divide 4 by -2 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}