Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{b}{a-b}}{\frac{aa}{a\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a is a\left(a-b\right). Multiply \frac{a}{a-b} times \frac{a}{a}. Multiply \frac{a+b}{a} times \frac{a-b}{a-b}.
\frac{\frac{b}{a-b}}{\frac{aa-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
Since \frac{aa}{a\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b}{a-b}}{\frac{a^{2}-a^{2}+ab-ba+b^{2}}{a\left(a-b\right)}}
Do the multiplications in aa-\left(a+b\right)\left(a-b\right).
\frac{\frac{b}{a-b}}{\frac{b^{2}}{a\left(a-b\right)}}
Combine like terms in a^{2}-a^{2}+ab-ba+b^{2}.
\frac{ba\left(a-b\right)}{\left(a-b\right)b^{2}}
Divide \frac{b}{a-b} by \frac{b^{2}}{a\left(a-b\right)} by multiplying \frac{b}{a-b} by the reciprocal of \frac{b^{2}}{a\left(a-b\right)}.
\frac{a}{b}
Cancel out b\left(a-b\right) in both numerator and denominator.
\frac{\frac{b}{a-b}}{\frac{aa}{a\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and a is a\left(a-b\right). Multiply \frac{a}{a-b} times \frac{a}{a}. Multiply \frac{a+b}{a} times \frac{a-b}{a-b}.
\frac{\frac{b}{a-b}}{\frac{aa-\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)}}
Since \frac{aa}{a\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{a\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b}{a-b}}{\frac{a^{2}-a^{2}+ab-ba+b^{2}}{a\left(a-b\right)}}
Do the multiplications in aa-\left(a+b\right)\left(a-b\right).
\frac{\frac{b}{a-b}}{\frac{b^{2}}{a\left(a-b\right)}}
Combine like terms in a^{2}-a^{2}+ab-ba+b^{2}.
\frac{ba\left(a-b\right)}{\left(a-b\right)b^{2}}
Divide \frac{b}{a-b} by \frac{b^{2}}{a\left(a-b\right)} by multiplying \frac{b}{a-b} by the reciprocal of \frac{b^{2}}{a\left(a-b\right)}.
\frac{a}{b}
Cancel out b\left(a-b\right) in both numerator and denominator.