Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{b+4}{\left(b+6\right)^{2}}-\frac{3-2b}{6+b}
Factor 36+12b+b^{2}.
\frac{b+4}{\left(b+6\right)^{2}}-\frac{\left(3-2b\right)\left(b+6\right)}{\left(b+6\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+6\right)^{2} and 6+b is \left(b+6\right)^{2}. Multiply \frac{3-2b}{6+b} times \frac{b+6}{b+6}.
\frac{b+4-\left(3-2b\right)\left(b+6\right)}{\left(b+6\right)^{2}}
Since \frac{b+4}{\left(b+6\right)^{2}} and \frac{\left(3-2b\right)\left(b+6\right)}{\left(b+6\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{b+4-3b-18+2b^{2}+12b}{\left(b+6\right)^{2}}
Do the multiplications in b+4-\left(3-2b\right)\left(b+6\right).
\frac{10b-14+2b^{2}}{\left(b+6\right)^{2}}
Combine like terms in b+4-3b-18+2b^{2}+12b.
\frac{10b-14+2b^{2}}{b^{2}+12b+36}
Expand \left(b+6\right)^{2}.
\frac{b+4}{\left(b+6\right)^{2}}-\frac{3-2b}{6+b}
Factor 36+12b+b^{2}.
\frac{b+4}{\left(b+6\right)^{2}}-\frac{\left(3-2b\right)\left(b+6\right)}{\left(b+6\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(b+6\right)^{2} and 6+b is \left(b+6\right)^{2}. Multiply \frac{3-2b}{6+b} times \frac{b+6}{b+6}.
\frac{b+4-\left(3-2b\right)\left(b+6\right)}{\left(b+6\right)^{2}}
Since \frac{b+4}{\left(b+6\right)^{2}} and \frac{\left(3-2b\right)\left(b+6\right)}{\left(b+6\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{b+4-3b-18+2b^{2}+12b}{\left(b+6\right)^{2}}
Do the multiplications in b+4-\left(3-2b\right)\left(b+6\right).
\frac{10b-14+2b^{2}}{\left(b+6\right)^{2}}
Combine like terms in b+4-3b-18+2b^{2}+12b.
\frac{10b-14+2b^{2}}{b^{2}+12b+36}
Expand \left(b+6\right)^{2}.