Solve for d_x
\left\{\begin{matrix}d_{x}=\frac{a_{y}}{\left(y+1\right)x^{2}}\text{, }&a_{y}\neq 0\text{ and }y\neq -1\text{ and }x\neq 0\\d_{x}\neq 0\text{, }&\left(x=0\text{ or }y=-1\right)\text{ and }a_{y}=0\end{matrix}\right.
Solve for a_y
a_{y}=d_{x}\left(y+1\right)x^{2}
d_{x}\neq 0
Graph
Share
Copied to clipboard
a_{y}-x^{2}d_{x}=x^{2}yd_{x}
Variable d_{x} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by d_{x}.
a_{y}-x^{2}d_{x}-x^{2}yd_{x}=0
Subtract x^{2}yd_{x} from both sides.
-x^{2}d_{x}-x^{2}yd_{x}=-a_{y}
Subtract a_{y} from both sides. Anything subtracted from zero gives its negation.
\left(-x^{2}-x^{2}y\right)d_{x}=-a_{y}
Combine all terms containing d_{x}.
\left(-x^{2}-yx^{2}\right)d_{x}=-a_{y}
The equation is in standard form.
\frac{\left(-x^{2}-yx^{2}\right)d_{x}}{-x^{2}-yx^{2}}=-\frac{a_{y}}{-x^{2}-yx^{2}}
Divide both sides by -x^{2}-x^{2}y.
d_{x}=-\frac{a_{y}}{-x^{2}-yx^{2}}
Dividing by -x^{2}-x^{2}y undoes the multiplication by -x^{2}-x^{2}y.
d_{x}=\frac{a_{y}}{\left(y+1\right)x^{2}}
Divide -a_{y} by -x^{2}-x^{2}y.
d_{x}=\frac{a_{y}}{\left(y+1\right)x^{2}}\text{, }d_{x}\neq 0
Variable d_{x} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}