Solve for a_2
a_{2}=-a_{n}+1+\frac{2}{n}
n\neq 0
Solve for a_n
a_{n}=-a_{2}+1+\frac{2}{n}
n\neq 0
Share
Copied to clipboard
\left(a_{2}+a_{n}-1\right)n=2
Multiply both sides of the equation by 2.
a_{2}n+a_{n}n-n=2
Use the distributive property to multiply a_{2}+a_{n}-1 by n.
a_{2}n-n=2-a_{n}n
Subtract a_{n}n from both sides.
a_{2}n=2-a_{n}n+n
Add n to both sides.
na_{2}=2+n-a_{n}n
The equation is in standard form.
\frac{na_{2}}{n}=\frac{2+n-a_{n}n}{n}
Divide both sides by n.
a_{2}=\frac{2+n-a_{n}n}{n}
Dividing by n undoes the multiplication by n.
a_{2}=-a_{n}+1+\frac{2}{n}
Divide 2-a_{n}n+n by n.
\left(a_{2}+a_{n}-1\right)n=2
Multiply both sides of the equation by 2.
a_{2}n+a_{n}n-n=2
Use the distributive property to multiply a_{2}+a_{n}-1 by n.
a_{n}n-n=2-a_{2}n
Subtract a_{2}n from both sides.
a_{n}n=2-a_{2}n+n
Add n to both sides.
na_{n}=2+n-a_{2}n
The equation is in standard form.
\frac{na_{n}}{n}=\frac{2+n-a_{2}n}{n}
Divide both sides by n.
a_{n}=\frac{2+n-a_{2}n}{n}
Dividing by n undoes the multiplication by n.
a_{n}=-a_{2}+1+\frac{2}{n}
Divide 2-a_{2}n+n by n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}