Solve for a_1
a_{1}=10a_{2}
a_{2}\neq 0
Solve for a_2
a_{2}=\frac{a_{1}}{10}
a_{1}\neq 0
Share
Copied to clipboard
10a_{1}=a_{2}\times 100
Multiply both sides of the equation by 10a_{2}, the least common multiple of a_{2},10.
10a_{1}=100a_{2}
The equation is in standard form.
\frac{10a_{1}}{10}=\frac{100a_{2}}{10}
Divide both sides by 10.
a_{1}=\frac{100a_{2}}{10}
Dividing by 10 undoes the multiplication by 10.
a_{1}=10a_{2}
Divide 100a_{2} by 10.
10a_{1}=a_{2}\times 100
Variable a_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10a_{2}, the least common multiple of a_{2},10.
a_{2}\times 100=10a_{1}
Swap sides so that all variable terms are on the left hand side.
100a_{2}=10a_{1}
The equation is in standard form.
\frac{100a_{2}}{100}=\frac{10a_{1}}{100}
Divide both sides by 100.
a_{2}=\frac{10a_{1}}{100}
Dividing by 100 undoes the multiplication by 100.
a_{2}=\frac{a_{1}}{10}
Divide 10a_{1} by 100.
a_{2}=\frac{a_{1}}{10}\text{, }a_{2}\neq 0
Variable a_{2} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}