Evaluate
\frac{2a_{1}}{a-1}
Differentiate w.r.t. a_1
\frac{2}{a-1}
Share
Copied to clipboard
\frac{\frac{a_{1}}{\frac{\left(a+1\right)\left(a-1\right)}{a-1}+\frac{2}{a-1}}}{\frac{1}{2}-\frac{1}{a+\frac{1}{a}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+1 times \frac{a-1}{a-1}.
\frac{\frac{a_{1}}{\frac{\left(a+1\right)\left(a-1\right)+2}{a-1}}}{\frac{1}{2}-\frac{1}{a+\frac{1}{a}}}
Since \frac{\left(a+1\right)\left(a-1\right)}{a-1} and \frac{2}{a-1} have the same denominator, add them by adding their numerators.
\frac{\frac{a_{1}}{\frac{a^{2}-a+a-1+2}{a-1}}}{\frac{1}{2}-\frac{1}{a+\frac{1}{a}}}
Do the multiplications in \left(a+1\right)\left(a-1\right)+2.
\frac{\frac{a_{1}}{\frac{a^{2}+1}{a-1}}}{\frac{1}{2}-\frac{1}{a+\frac{1}{a}}}
Combine like terms in a^{2}-a+a-1+2.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{1}{2}-\frac{1}{a+\frac{1}{a}}}
Divide a_{1} by \frac{a^{2}+1}{a-1} by multiplying a_{1} by the reciprocal of \frac{a^{2}+1}{a-1}.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{1}{2}-\frac{1}{\frac{aa}{a}+\frac{1}{a}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{1}{2}-\frac{1}{\frac{aa+1}{a}}}
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{1}{2}-\frac{1}{\frac{a^{2}+1}{a}}}
Do the multiplications in aa+1.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{1}{2}-\frac{a}{a^{2}+1}}
Divide 1 by \frac{a^{2}+1}{a} by multiplying 1 by the reciprocal of \frac{a^{2}+1}{a}.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{a^{2}+1}{2\left(a^{2}+1\right)}-\frac{2a}{2\left(a^{2}+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and a^{2}+1 is 2\left(a^{2}+1\right). Multiply \frac{1}{2} times \frac{a^{2}+1}{a^{2}+1}. Multiply \frac{a}{a^{2}+1} times \frac{2}{2}.
\frac{\frac{a_{1}\left(a-1\right)}{a^{2}+1}}{\frac{a^{2}+1-2a}{2\left(a^{2}+1\right)}}
Since \frac{a^{2}+1}{2\left(a^{2}+1\right)} and \frac{2a}{2\left(a^{2}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a_{1}\left(a-1\right)\times 2\left(a^{2}+1\right)}{\left(a^{2}+1\right)\left(a^{2}+1-2a\right)}
Divide \frac{a_{1}\left(a-1\right)}{a^{2}+1} by \frac{a^{2}+1-2a}{2\left(a^{2}+1\right)} by multiplying \frac{a_{1}\left(a-1\right)}{a^{2}+1} by the reciprocal of \frac{a^{2}+1-2a}{2\left(a^{2}+1\right)}.
\frac{2a_{1}\left(a-1\right)}{a^{2}-2a+1}
Cancel out a^{2}+1 in both numerator and denominator.
\frac{2a_{1}\left(a-1\right)}{\left(a-1\right)^{2}}
Factor the expressions that are not already factored.
\frac{2a_{1}}{a-1}
Cancel out a-1 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}