Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-7\right)\left(a^{2}+3a\right)}{\left(2a+6\right)\left(21-3a\right)}
Divide \frac{a-7}{2a+6} by \frac{21-3a}{a^{2}+3a} by multiplying \frac{a-7}{2a+6} by the reciprocal of \frac{21-3a}{a^{2}+3a}.
\frac{a\left(a-7\right)\left(a+3\right)}{2\times 3\left(a+3\right)\left(-a+7\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a+3\right)\left(-a+7\right)}{2\times 3\left(a+3\right)\left(-a+7\right)}
Extract the negative sign in -7+a.
\frac{-a}{2\times 3}
Cancel out \left(a+3\right)\left(-a+7\right) in both numerator and denominator.
\frac{-a}{6}
Expand the expression.
\frac{\left(a-7\right)\left(a^{2}+3a\right)}{\left(2a+6\right)\left(21-3a\right)}
Divide \frac{a-7}{2a+6} by \frac{21-3a}{a^{2}+3a} by multiplying \frac{a-7}{2a+6} by the reciprocal of \frac{21-3a}{a^{2}+3a}.
\frac{a\left(a-7\right)\left(a+3\right)}{2\times 3\left(a+3\right)\left(-a+7\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a+3\right)\left(-a+7\right)}{2\times 3\left(a+3\right)\left(-a+7\right)}
Extract the negative sign in -7+a.
\frac{-a}{2\times 3}
Cancel out \left(a+3\right)\left(-a+7\right) in both numerator and denominator.
\frac{-a}{6}
Expand the expression.