Evaluate
\frac{\left(2a-1\right)\left(15a^{2}-14a+11\right)}{2\left(a^{2}-1\right)}
Expand
\frac{30a^{3}-43a^{2}+36a-11}{2\left(a^{2}-1\right)}
Share
Copied to clipboard
\frac{\left(a-1\right)\times 15}{a+1}a+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{a-1}{a+1}\times 15 as a single fraction.
\frac{\left(a-1\right)\times 15a}{a+1}+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{\left(a-1\right)\times 15}{a+1}a as a single fraction.
\frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)}+\frac{11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and 2 is 2\left(a+1\right). Multiply \frac{\left(a-1\right)\times 15a}{a+1} times \frac{2}{2}. Multiply \frac{11}{2} times \frac{a+1}{a+1}.
\frac{2\left(a-1\right)\times 15a+11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
Since \frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)} and \frac{11\left(a+1\right)}{2\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{2}-30a+11a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Do the multiplications in 2\left(a-1\right)\times 15a+11\left(a+1\right).
\frac{30a^{2}-19a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Combine like terms in 30a^{2}-30a+11a+11.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}+\frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+1\right) and a-1 is 2\left(a-1\right)\left(a+1\right). Multiply \frac{30a^{2}-19a+11}{2\left(a+1\right)} times \frac{a-1}{a-1}. Multiply \frac{3a}{a-1} times \frac{2\left(a+1\right)}{2\left(a+1\right)}.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
Since \frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in \left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right).
\frac{30a^{3}-43a^{2}+36a-11}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in 30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a.
\frac{30a^{3}-43a^{2}+36a-11}{2a^{2}-2}
Expand 2\left(a-1\right)\left(a+1\right).
\frac{\left(a-1\right)\times 15}{a+1}a+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{a-1}{a+1}\times 15 as a single fraction.
\frac{\left(a-1\right)\times 15a}{a+1}+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{\left(a-1\right)\times 15}{a+1}a as a single fraction.
\frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)}+\frac{11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and 2 is 2\left(a+1\right). Multiply \frac{\left(a-1\right)\times 15a}{a+1} times \frac{2}{2}. Multiply \frac{11}{2} times \frac{a+1}{a+1}.
\frac{2\left(a-1\right)\times 15a+11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
Since \frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)} and \frac{11\left(a+1\right)}{2\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{2}-30a+11a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Do the multiplications in 2\left(a-1\right)\times 15a+11\left(a+1\right).
\frac{30a^{2}-19a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Combine like terms in 30a^{2}-30a+11a+11.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}+\frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+1\right) and a-1 is 2\left(a-1\right)\left(a+1\right). Multiply \frac{30a^{2}-19a+11}{2\left(a+1\right)} times \frac{a-1}{a-1}. Multiply \frac{3a}{a-1} times \frac{2\left(a+1\right)}{2\left(a+1\right)}.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
Since \frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in \left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right).
\frac{30a^{3}-43a^{2}+36a-11}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in 30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a.
\frac{30a^{3}-43a^{2}+36a-11}{2a^{2}-2}
Expand 2\left(a-1\right)\left(a+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}