Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a-1\right)\times 15}{a+1}a+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{a-1}{a+1}\times 15 as a single fraction.
\frac{\left(a-1\right)\times 15a}{a+1}+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{\left(a-1\right)\times 15}{a+1}a as a single fraction.
\frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)}+\frac{11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and 2 is 2\left(a+1\right). Multiply \frac{\left(a-1\right)\times 15a}{a+1} times \frac{2}{2}. Multiply \frac{11}{2} times \frac{a+1}{a+1}.
\frac{2\left(a-1\right)\times 15a+11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
Since \frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)} and \frac{11\left(a+1\right)}{2\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{2}-30a+11a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Do the multiplications in 2\left(a-1\right)\times 15a+11\left(a+1\right).
\frac{30a^{2}-19a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Combine like terms in 30a^{2}-30a+11a+11.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}+\frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+1\right) and a-1 is 2\left(a-1\right)\left(a+1\right). Multiply \frac{30a^{2}-19a+11}{2\left(a+1\right)} times \frac{a-1}{a-1}. Multiply \frac{3a}{a-1} times \frac{2\left(a+1\right)}{2\left(a+1\right)}.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
Since \frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in \left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right).
\frac{30a^{3}-43a^{2}+36a-11}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in 30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a.
\frac{30a^{3}-43a^{2}+36a-11}{2a^{2}-2}
Expand 2\left(a-1\right)\left(a+1\right).
\frac{\left(a-1\right)\times 15}{a+1}a+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{a-1}{a+1}\times 15 as a single fraction.
\frac{\left(a-1\right)\times 15a}{a+1}+\frac{11}{2}+\frac{3a}{a-1}
Express \frac{\left(a-1\right)\times 15}{a+1}a as a single fraction.
\frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)}+\frac{11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and 2 is 2\left(a+1\right). Multiply \frac{\left(a-1\right)\times 15a}{a+1} times \frac{2}{2}. Multiply \frac{11}{2} times \frac{a+1}{a+1}.
\frac{2\left(a-1\right)\times 15a+11\left(a+1\right)}{2\left(a+1\right)}+\frac{3a}{a-1}
Since \frac{2\left(a-1\right)\times 15a}{2\left(a+1\right)} and \frac{11\left(a+1\right)}{2\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{2}-30a+11a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Do the multiplications in 2\left(a-1\right)\times 15a+11\left(a+1\right).
\frac{30a^{2}-19a+11}{2\left(a+1\right)}+\frac{3a}{a-1}
Combine like terms in 30a^{2}-30a+11a+11.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)}+\frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+1\right) and a-1 is 2\left(a-1\right)\left(a+1\right). Multiply \frac{30a^{2}-19a+11}{2\left(a+1\right)} times \frac{a-1}{a-1}. Multiply \frac{3a}{a-1} times \frac{2\left(a+1\right)}{2\left(a+1\right)}.
\frac{\left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)}
Since \frac{\left(30a^{2}-19a+11\right)\left(a-1\right)}{2\left(a-1\right)\left(a+1\right)} and \frac{3a\times 2\left(a+1\right)}{2\left(a-1\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a}{2\left(a-1\right)\left(a+1\right)}
Do the multiplications in \left(30a^{2}-19a+11\right)\left(a-1\right)+3a\times 2\left(a+1\right).
\frac{30a^{3}-43a^{2}+36a-11}{2\left(a-1\right)\left(a+1\right)}
Combine like terms in 30a^{3}-30a^{2}-19a^{2}+19a+11a-11+6a^{2}+6a.
\frac{30a^{3}-43a^{2}+36a-11}{2a^{2}-2}
Expand 2\left(a-1\right)\left(a+1\right).