Solve for a
a=2\left(y-5\right)
y\neq 4
Solve for y
y=\frac{a+10}{2}
a\neq -2
Graph
Share
Copied to clipboard
a=\left(y-4\right)\times 3-\left(y-2\right)
Multiply both sides of the equation by y-4, the least common multiple of y-4,4-y.
a=3y-12-\left(y-2\right)
Use the distributive property to multiply y-4 by 3.
a=3y-12-y+2
To find the opposite of y-2, find the opposite of each term.
a=2y-12+2
Combine 3y and -y to get 2y.
a=2y-10
Add -12 and 2 to get -10.
a=\left(y-4\right)\times 3-\left(y-2\right)
Variable y cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by y-4, the least common multiple of y-4,4-y.
a=3y-12-\left(y-2\right)
Use the distributive property to multiply y-4 by 3.
a=3y-12-y+2
To find the opposite of y-2, find the opposite of each term.
a=2y-12+2
Combine 3y and -y to get 2y.
a=2y-10
Add -12 and 2 to get -10.
2y-10=a
Swap sides so that all variable terms are on the left hand side.
2y=a+10
Add 10 to both sides.
\frac{2y}{2}=\frac{a+10}{2}
Divide both sides by 2.
y=\frac{a+10}{2}
Dividing by 2 undoes the multiplication by 2.
y=\frac{a}{2}+5
Divide a+10 by 2.
y=\frac{a}{2}+5\text{, }y\neq 4
Variable y cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}