Solve for a
a=-\frac{h\left(b-2k\right)}{k}
h\neq 0\text{ and }k\neq 0
Solve for b
b=-\frac{k\left(a-2h\right)}{h}
h\neq 0\text{ and }k\neq 0
Share
Copied to clipboard
ka+hb=2hk
Multiply both sides of the equation by hk, the least common multiple of h,k.
ka=2hk-hb
Subtract hb from both sides.
ka=2hk-bh
The equation is in standard form.
\frac{ka}{k}=\frac{h\left(2k-b\right)}{k}
Divide both sides by k.
a=\frac{h\left(2k-b\right)}{k}
Dividing by k undoes the multiplication by k.
ka+hb=2hk
Multiply both sides of the equation by hk, the least common multiple of h,k.
hb=2hk-ka
Subtract ka from both sides.
hb=2hk-ak
The equation is in standard form.
\frac{hb}{h}=\frac{k\left(2h-a\right)}{h}
Divide both sides by h.
b=\frac{k\left(2h-a\right)}{h}
Dividing by h undoes the multiplication by h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}