Solve for a
a=\frac{7b}{2}
b\neq 0
Solve for b
b=\frac{2a}{7}
a\neq 0
Share
Copied to clipboard
2a+2b\left(-3\right)=b
Multiply both sides of the equation by 2b, the least common multiple of b,2.
2a-6b=b
Multiply 2 and -3 to get -6.
2a=b+6b
Add 6b to both sides.
2a=7b
Combine b and 6b to get 7b.
\frac{2a}{2}=\frac{7b}{2}
Divide both sides by 2.
a=\frac{7b}{2}
Dividing by 2 undoes the multiplication by 2.
2a+2b\left(-3\right)=b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2b, the least common multiple of b,2.
2a-6b=b
Multiply 2 and -3 to get -6.
2a-6b-b=0
Subtract b from both sides.
2a-7b=0
Combine -6b and -b to get -7b.
-7b=-2a
Subtract 2a from both sides. Anything subtracted from zero gives its negation.
\frac{-7b}{-7}=-\frac{2a}{-7}
Divide both sides by -7.
b=-\frac{2a}{-7}
Dividing by -7 undoes the multiplication by -7.
b=\frac{2a}{7}
Divide -2a by -7.
b=\frac{2a}{7}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}