Solve for a
a=b\left(c-3\right)
b\neq 0
Solve for b
\left\{\begin{matrix}b=-\frac{a}{3-c}\text{, }&a\neq 0\text{ and }c\neq 3\\b\neq 0\text{, }&c=3\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
a+b\times 3=cb
Multiply both sides of the equation by b.
a=cb-b\times 3
Subtract b\times 3 from both sides.
a=cb-3b
Multiply -1 and 3 to get -3.
a+b\times 3=cb
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
a+b\times 3-cb=0
Subtract cb from both sides.
b\times 3-cb=-a
Subtract a from both sides. Anything subtracted from zero gives its negation.
\left(3-c\right)b=-a
Combine all terms containing b.
\frac{\left(3-c\right)b}{3-c}=-\frac{a}{3-c}
Divide both sides by 3-c.
b=-\frac{a}{3-c}
Dividing by 3-c undoes the multiplication by 3-c.
b=-\frac{a}{3-c}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}