Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{b\left(a-b\right)}+\frac{b}{a\left(a-b\right)}-\frac{a+b}{ab}
Factor ab-b^{2}. Factor a^{2}-ab.
\frac{aa}{ab\left(a-b\right)}+\frac{bb}{ab\left(a-b\right)}-\frac{a+b}{ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(a-b\right) and a\left(a-b\right) is ab\left(a-b\right). Multiply \frac{a}{b\left(a-b\right)} times \frac{a}{a}. Multiply \frac{b}{a\left(a-b\right)} times \frac{b}{b}.
\frac{aa+bb}{ab\left(a-b\right)}-\frac{a+b}{ab}
Since \frac{aa}{ab\left(a-b\right)} and \frac{bb}{ab\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}-\frac{a+b}{ab}
Do the multiplications in aa+bb.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab\left(a-b\right) and ab is ab\left(a-b\right). Multiply \frac{a+b}{ab} times \frac{a-b}{a-b}.
\frac{a^{2}+b^{2}-\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
Since \frac{a^{2}+b^{2}}{ab\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+b^{2}-a^{2}+ab-ba+b^{2}}{ab\left(a-b\right)}
Do the multiplications in a^{2}+b^{2}-\left(a+b\right)\left(a-b\right).
\frac{2b^{2}}{ab\left(a-b\right)}
Combine like terms in a^{2}+b^{2}-a^{2}+ab-ba+b^{2}.
\frac{2b}{a\left(a-b\right)}
Cancel out b in both numerator and denominator.
\frac{2b}{a^{2}-ab}
Expand a\left(a-b\right).
\frac{a}{b\left(a-b\right)}+\frac{b}{a\left(a-b\right)}-\frac{a+b}{ab}
Factor ab-b^{2}. Factor a^{2}-ab.
\frac{aa}{ab\left(a-b\right)}+\frac{bb}{ab\left(a-b\right)}-\frac{a+b}{ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b\left(a-b\right) and a\left(a-b\right) is ab\left(a-b\right). Multiply \frac{a}{b\left(a-b\right)} times \frac{a}{a}. Multiply \frac{b}{a\left(a-b\right)} times \frac{b}{b}.
\frac{aa+bb}{ab\left(a-b\right)}-\frac{a+b}{ab}
Since \frac{aa}{ab\left(a-b\right)} and \frac{bb}{ab\left(a-b\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}-\frac{a+b}{ab}
Do the multiplications in aa+bb.
\frac{a^{2}+b^{2}}{ab\left(a-b\right)}-\frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab\left(a-b\right) and ab is ab\left(a-b\right). Multiply \frac{a+b}{ab} times \frac{a-b}{a-b}.
\frac{a^{2}+b^{2}-\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)}
Since \frac{a^{2}+b^{2}}{ab\left(a-b\right)} and \frac{\left(a+b\right)\left(a-b\right)}{ab\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}+b^{2}-a^{2}+ab-ba+b^{2}}{ab\left(a-b\right)}
Do the multiplications in a^{2}+b^{2}-\left(a+b\right)\left(a-b\right).
\frac{2b^{2}}{ab\left(a-b\right)}
Combine like terms in a^{2}+b^{2}-a^{2}+ab-ba+b^{2}.
\frac{2b}{a\left(a-b\right)}
Cancel out b in both numerator and denominator.
\frac{2b}{a^{2}-ab}
Expand a\left(a-b\right).