Solve for a
\left\{\begin{matrix}a=-\frac{7\left(170-z\right)}{17y}\text{, }&y\neq 0\\a\in \mathrm{R}\text{, }&z=170\text{ and }y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{7\left(170-z\right)}{17a}\text{, }&a\neq 0\\y\in \mathrm{R}\text{, }&z=170\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
17ay+2380=7z+1190
Multiply both sides of the equation by 119, the least common multiple of 7,17.
17ay=7z+1190-2380
Subtract 2380 from both sides.
17ay=7z-1190
Subtract 2380 from 1190 to get -1190.
17ya=7z-1190
The equation is in standard form.
\frac{17ya}{17y}=\frac{7z-1190}{17y}
Divide both sides by 17y.
a=\frac{7z-1190}{17y}
Dividing by 17y undoes the multiplication by 17y.
a=\frac{7\left(z-170\right)}{17y}
Divide -1190+7z by 17y.
17ay+2380=7z+1190
Multiply both sides of the equation by 119, the least common multiple of 7,17.
17ay=7z+1190-2380
Subtract 2380 from both sides.
17ay=7z-1190
Subtract 2380 from 1190 to get -1190.
\frac{17ay}{17a}=\frac{7z-1190}{17a}
Divide both sides by 17a.
y=\frac{7z-1190}{17a}
Dividing by 17a undoes the multiplication by 17a.
y=\frac{7\left(z-170\right)}{17a}
Divide -1190+7z by 17a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}