Solve for a
a=2\sqrt{5}\approx 4.472135955
Share
Copied to clipboard
\frac{a\times 2}{\sqrt{2}}=\frac{2}{\frac{\sqrt{10}}{10}}
Divide a by \frac{\sqrt{2}}{2} by multiplying a by the reciprocal of \frac{\sqrt{2}}{2}.
\frac{a\times 2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{2}{\frac{\sqrt{10}}{10}}
Rationalize the denominator of \frac{a\times 2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{a\times 2\sqrt{2}}{2}=\frac{2}{\frac{\sqrt{10}}{10}}
The square of \sqrt{2} is 2.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\times 10}{\sqrt{10}}
Divide 2 by \frac{\sqrt{10}}{10} by multiplying 2 by the reciprocal of \frac{\sqrt{10}}{10}.
\frac{a\times 2\sqrt{2}}{2}=\frac{20}{\sqrt{10}}
Multiply 2 and 10 to get 20.
\frac{a\times 2\sqrt{2}}{2}=\frac{20\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{20}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{a\times 2\sqrt{2}}{2}=\frac{20\sqrt{10}}{10}
The square of \sqrt{10} is 10.
\frac{a\times 2\sqrt{2}}{2}=2\sqrt{10}
Divide 20\sqrt{10} by 10 to get 2\sqrt{10}.
a\sqrt{2}=2\sqrt{10}
Cancel out 2 and 2.
\sqrt{2}a=2\sqrt{10}
The equation is in standard form.
\frac{\sqrt{2}a}{\sqrt{2}}=\frac{2\sqrt{10}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
a=\frac{2\sqrt{10}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
a=2\sqrt{5}
Divide 2\sqrt{10} by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}