Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a+1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a^{5}}{a-1} times \frac{a+1}{a+1}. Multiply \frac{a^{2}}{a+1} times \frac{a-1}{a-1}.
\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Since \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1}
Do the multiplications in a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{1}{a-1} times \frac{a+1}{a+1}.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Since \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{a+1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Do the multiplications in a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1}
Factor the expressions that are not already factored in \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1}
Cancel out a-1 in both numerator and denominator.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1}
Since \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} and \frac{1}{a+1} have the same denominator, add them by adding their numerators.
\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}
Combine like terms in a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1}
Factor the expressions that are not already factored in \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)
Cancel out a+1 in both numerator and denominator.
a^{4}+a^{3}+a^{2}+2
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a+1 is \left(a-1\right)\left(a+1\right). Multiply \frac{a^{5}}{a-1} times \frac{a+1}{a+1}. Multiply \frac{a^{2}}{a+1} times \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}\left(a+1\right)-a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Since \frac{a^{5}\left(a+1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{a^{2}\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a-1}+\frac{1}{a+1})
Do the multiplications in a^{5}\left(a+1\right)-a^{2}\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)}-\frac{a+1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+1\right) and a-1 is \left(a-1\right)\left(a+1\right). Multiply \frac{1}{a-1} times \frac{a+1}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Since \frac{a^{6}+a^{5}-a^{3}+a^{2}}{\left(a-1\right)\left(a+1\right)} and \frac{a+1}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Do the multiplications in a^{6}+a^{5}-a^{3}+a^{2}-\left(a+1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-1\right)\left(a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1\right)}{\left(a-1\right)\left(a+1\right)}+\frac{1}{a+1})
Factor the expressions that are not already factored in \frac{a^{6}+a^{5}-a^{3}+a^{2}-a-1}{\left(a-1\right)\left(a+1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1}+\frac{1}{a+1})
Cancel out a-1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1}{a+1})
Since \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1}{a+1} and \frac{1}{a+1} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1})
Combine like terms in a^{5}+2a^{4}+2a^{3}+a^{2}+2a+1+1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a+1\right)\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right)}{a+1})
Factor the expressions that are not already factored in \frac{a^{5}+2a^{4}+2a^{3}+a^{2}+2a+2}{a+1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(a^{2}-a+1\right)\left(a^{2}+2a+2\right))
Cancel out a+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{4}+a^{3}+a^{2}+2)
Expand the expression.
4a^{4-1}+3a^{3-1}+2a^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
4a^{3}+3a^{3-1}+2a^{2-1}
Subtract 1 from 4.
4a^{3}+3a^{2}+2a^{2-1}
Subtract 1 from 3.
4a^{3}+3a^{2}+2a^{1}
Subtract 1 from 2.
4a^{3}+3a^{2}+2a
For any term t, t^{1}=t.