Solve for a
a=\frac{-1+\sqrt{15}i}{8}\approx -0.125+0.484122918i
a=\frac{-\sqrt{15}i-1}{8}\approx -0.125-0.484122918i
Share
Copied to clipboard
a^{3}-1=-3a^{2}\left(a-1\right)
Variable a cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by a-1.
a^{3}-1=-3a^{3}+3a^{2}
Use the distributive property to multiply -3a^{2} by a-1.
a^{3}-1+3a^{3}=3a^{2}
Add 3a^{3} to both sides.
4a^{3}-1=3a^{2}
Combine a^{3} and 3a^{3} to get 4a^{3}.
4a^{3}-1-3a^{2}=0
Subtract 3a^{2} from both sides.
4a^{3}-3a^{2}-1=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 4. List all candidates \frac{p}{q}.
a=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4a^{2}+a+1=0
By Factor theorem, a-k is a factor of the polynomial for each root k. Divide 4a^{3}-3a^{2}-1 by a-1 to get 4a^{2}+a+1. Solve the equation where the result equals to 0.
a=\frac{-1±\sqrt{1^{2}-4\times 4\times 1}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 1 for b, and 1 for c in the quadratic formula.
a=\frac{-1±\sqrt{-15}}{8}
Do the calculations.
a=\frac{-\sqrt{15}i-1}{8} a=\frac{-1+\sqrt{15}i}{8}
Solve the equation 4a^{2}+a+1=0 when ± is plus and when ± is minus.
a\in \emptyset
Remove the values that the variable cannot be equal to.
a=1 a=\frac{-\sqrt{15}i-1}{8} a=\frac{-1+\sqrt{15}i}{8}
List all found solutions.
a=\frac{-1+\sqrt{15}i}{8} a=\frac{-\sqrt{15}i-1}{8}
Variable a cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}