Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{2a}{a-y}
Factor the expressions that are not already factored in \frac{a^{2}-y^{2}}{ay-y^{2}}.
\frac{y+a}{y}-\frac{2a}{a-y}
Cancel out -y+a in both numerator and denominator.
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{2ay}{y\left(-y+a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and a-y is y\left(-y+a\right). Multiply \frac{y+a}{y} times \frac{-y+a}{-y+a}. Multiply \frac{2a}{a-y} times \frac{y}{y}.
\frac{\left(y+a\right)\left(-y+a\right)-2ay}{y\left(-y+a\right)}
Since \frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)} and \frac{2ay}{y\left(-y+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{ay-y^{2}-ay+a^{2}-2ay}{y\left(-y+a\right)}
Do the multiplications in \left(y+a\right)\left(-y+a\right)-2ay.
\frac{-y^{2}-2ay+a^{2}}{y\left(-y+a\right)}
Combine like terms in ay-y^{2}-ay+a^{2}-2ay.
\frac{-y^{2}-2ay+a^{2}}{-y^{2}+ay}
Expand y\left(-y+a\right).
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{2a}{a-y}
Factor the expressions that are not already factored in \frac{a^{2}-y^{2}}{ay-y^{2}}.
\frac{y+a}{y}-\frac{2a}{a-y}
Cancel out -y+a in both numerator and denominator.
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{2ay}{y\left(-y+a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and a-y is y\left(-y+a\right). Multiply \frac{y+a}{y} times \frac{-y+a}{-y+a}. Multiply \frac{2a}{a-y} times \frac{y}{y}.
\frac{\left(y+a\right)\left(-y+a\right)-2ay}{y\left(-y+a\right)}
Since \frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)} and \frac{2ay}{y\left(-y+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{ay-y^{2}-ay+a^{2}-2ay}{y\left(-y+a\right)}
Do the multiplications in \left(y+a\right)\left(-y+a\right)-2ay.
\frac{-y^{2}-2ay+a^{2}}{y\left(-y+a\right)}
Combine like terms in ay-y^{2}-ay+a^{2}-2ay.
\frac{-y^{2}-2ay+a^{2}}{-y^{2}+ay}
Expand y\left(-y+a\right).