Evaluate
\frac{b}{a+b}
Expand
\frac{b}{a+b}
Share
Copied to clipboard
\frac{\frac{a\left(a-b\right)}{a^{2}}}{\frac{a}{b}-\frac{b}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{a^{2}}.
\frac{\frac{a-b}{a}}{\frac{a}{b}-\frac{b}{a}}
Cancel out a in both numerator and denominator.
\frac{\frac{a-b}{a}}{\frac{aa}{ab}-\frac{bb}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a is ab. Multiply \frac{a}{b} times \frac{a}{a}. Multiply \frac{b}{a} times \frac{b}{b}.
\frac{\frac{a-b}{a}}{\frac{aa-bb}{ab}}
Since \frac{aa}{ab} and \frac{bb}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a-b}{a}}{\frac{a^{2}-b^{2}}{ab}}
Do the multiplications in aa-bb.
\frac{\left(a-b\right)ab}{a\left(a^{2}-b^{2}\right)}
Divide \frac{a-b}{a} by \frac{a^{2}-b^{2}}{ab} by multiplying \frac{a-b}{a} by the reciprocal of \frac{a^{2}-b^{2}}{ab}.
\frac{b\left(a-b\right)}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{b}{a+b}
Cancel out a-b in both numerator and denominator.
\frac{\frac{a\left(a-b\right)}{a^{2}}}{\frac{a}{b}-\frac{b}{a}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{a^{2}}.
\frac{\frac{a-b}{a}}{\frac{a}{b}-\frac{b}{a}}
Cancel out a in both numerator and denominator.
\frac{\frac{a-b}{a}}{\frac{aa}{ab}-\frac{bb}{ab}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and a is ab. Multiply \frac{a}{b} times \frac{a}{a}. Multiply \frac{b}{a} times \frac{b}{b}.
\frac{\frac{a-b}{a}}{\frac{aa-bb}{ab}}
Since \frac{aa}{ab} and \frac{bb}{ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a-b}{a}}{\frac{a^{2}-b^{2}}{ab}}
Do the multiplications in aa-bb.
\frac{\left(a-b\right)ab}{a\left(a^{2}-b^{2}\right)}
Divide \frac{a-b}{a} by \frac{a^{2}-b^{2}}{ab} by multiplying \frac{a-b}{a} by the reciprocal of \frac{a^{2}-b^{2}}{ab}.
\frac{b\left(a-b\right)}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{b\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored.
\frac{b}{a+b}
Cancel out a-b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}