Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a-b\right)}{7a\left(a+b\right)}+\frac{a^{3}-b^{3}}{a^{2}-b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{7a^{2}+7ab}.
\frac{a-b}{7\left(a+b\right)}+\frac{a^{3}-b^{3}}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{a-b}{7\left(a+b\right)}+\frac{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored in \frac{a^{3}-b^{3}}{a^{2}-b^{2}}.
\frac{a-b}{7\left(a+b\right)}+\frac{a^{2}+ab+b^{2}}{a+b}
Cancel out a-b in both numerator and denominator.
\frac{a-b}{7\left(a+b\right)}+\frac{7\left(a^{2}+ab+b^{2}\right)}{7\left(a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7\left(a+b\right) and a+b is 7\left(a+b\right). Multiply \frac{a^{2}+ab+b^{2}}{a+b} times \frac{7}{7}.
\frac{a-b+7\left(a^{2}+ab+b^{2}\right)}{7\left(a+b\right)}
Since \frac{a-b}{7\left(a+b\right)} and \frac{7\left(a^{2}+ab+b^{2}\right)}{7\left(a+b\right)} have the same denominator, add them by adding their numerators.
\frac{a-b+7a^{2}+7ab+7b^{2}}{7\left(a+b\right)}
Do the multiplications in a-b+7\left(a^{2}+ab+b^{2}\right).
\frac{a-b+7a^{2}+7ab+7b^{2}}{7a+7b}
Expand 7\left(a+b\right).
\frac{a\left(a-b\right)}{7a\left(a+b\right)}+\frac{a^{3}-b^{3}}{a^{2}-b^{2}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{7a^{2}+7ab}.
\frac{a-b}{7\left(a+b\right)}+\frac{a^{3}-b^{3}}{a^{2}-b^{2}}
Cancel out a in both numerator and denominator.
\frac{a-b}{7\left(a+b\right)}+\frac{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}{\left(a+b\right)\left(a-b\right)}
Factor the expressions that are not already factored in \frac{a^{3}-b^{3}}{a^{2}-b^{2}}.
\frac{a-b}{7\left(a+b\right)}+\frac{a^{2}+ab+b^{2}}{a+b}
Cancel out a-b in both numerator and denominator.
\frac{a-b}{7\left(a+b\right)}+\frac{7\left(a^{2}+ab+b^{2}\right)}{7\left(a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7\left(a+b\right) and a+b is 7\left(a+b\right). Multiply \frac{a^{2}+ab+b^{2}}{a+b} times \frac{7}{7}.
\frac{a-b+7\left(a^{2}+ab+b^{2}\right)}{7\left(a+b\right)}
Since \frac{a-b}{7\left(a+b\right)} and \frac{7\left(a^{2}+ab+b^{2}\right)}{7\left(a+b\right)} have the same denominator, add them by adding their numerators.
\frac{a-b+7a^{2}+7ab+7b^{2}}{7\left(a+b\right)}
Do the multiplications in a-b+7\left(a^{2}+ab+b^{2}\right).
\frac{a-b+7a^{2}+7ab+7b^{2}}{7a+7b}
Expand 7\left(a+b\right).