Evaluate
\frac{a}{b-1}
Expand
\frac{a}{b-1}
Share
Copied to clipboard
\frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}+\frac{1}{b-1}
Divide \frac{a^{2}-1}{b^{2}-2b+1} by \frac{a+1}{b-1} by multiplying \frac{a^{2}-1}{b^{2}-2b+1} by the reciprocal of \frac{a+1}{b-1}.
\frac{\left(a-1\right)\left(b-1\right)\left(a+1\right)}{\left(a+1\right)\left(b-1\right)^{2}}+\frac{1}{b-1}
Factor the expressions that are not already factored in \frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}.
\frac{a-1}{b-1}+\frac{1}{b-1}
Cancel out \left(b-1\right)\left(a+1\right) in both numerator and denominator.
\frac{a-1+1}{b-1}
Since \frac{a-1}{b-1} and \frac{1}{b-1} have the same denominator, add them by adding their numerators.
\frac{a}{b-1}
Combine like terms in a-1+1.
\frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}+\frac{1}{b-1}
Divide \frac{a^{2}-1}{b^{2}-2b+1} by \frac{a+1}{b-1} by multiplying \frac{a^{2}-1}{b^{2}-2b+1} by the reciprocal of \frac{a+1}{b-1}.
\frac{\left(a-1\right)\left(b-1\right)\left(a+1\right)}{\left(a+1\right)\left(b-1\right)^{2}}+\frac{1}{b-1}
Factor the expressions that are not already factored in \frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}.
\frac{a-1}{b-1}+\frac{1}{b-1}
Cancel out \left(b-1\right)\left(a+1\right) in both numerator and denominator.
\frac{a-1+1}{b-1}
Since \frac{a-1}{b-1} and \frac{1}{b-1} have the same denominator, add them by adding their numerators.
\frac{a}{b-1}
Combine like terms in a-1+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}