Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}+\frac{1}{b-1}
Divide \frac{a^{2}-1}{b^{2}-2b+1} by \frac{a+1}{b-1} by multiplying \frac{a^{2}-1}{b^{2}-2b+1} by the reciprocal of \frac{a+1}{b-1}.
\frac{\left(a-1\right)\left(b-1\right)\left(a+1\right)}{\left(a+1\right)\left(b-1\right)^{2}}+\frac{1}{b-1}
Factor the expressions that are not already factored in \frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}.
\frac{a-1}{b-1}+\frac{1}{b-1}
Cancel out \left(b-1\right)\left(a+1\right) in both numerator and denominator.
\frac{a-1+1}{b-1}
Since \frac{a-1}{b-1} and \frac{1}{b-1} have the same denominator, add them by adding their numerators.
\frac{a}{b-1}
Combine like terms in a-1+1.
\frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}+\frac{1}{b-1}
Divide \frac{a^{2}-1}{b^{2}-2b+1} by \frac{a+1}{b-1} by multiplying \frac{a^{2}-1}{b^{2}-2b+1} by the reciprocal of \frac{a+1}{b-1}.
\frac{\left(a-1\right)\left(b-1\right)\left(a+1\right)}{\left(a+1\right)\left(b-1\right)^{2}}+\frac{1}{b-1}
Factor the expressions that are not already factored in \frac{\left(a^{2}-1\right)\left(b-1\right)}{\left(b^{2}-2b+1\right)\left(a+1\right)}.
\frac{a-1}{b-1}+\frac{1}{b-1}
Cancel out \left(b-1\right)\left(a+1\right) in both numerator and denominator.
\frac{a-1+1}{b-1}
Since \frac{a-1}{b-1} and \frac{1}{b-1} have the same denominator, add them by adding their numerators.
\frac{a}{b-1}
Combine like terms in a-1+1.