Evaluate
\frac{\left(3a+2\right)^{2}}{36}
Factor
\frac{\left(3a+2\right)^{2}}{36}
Quiz
Polynomial
5 problems similar to:
\frac { a ^ { 2 } } { 4 } + \frac { a } { 3 } + \frac { 1 } { 9 } =
Share
Copied to clipboard
\frac{3a^{2}}{12}+\frac{4a}{12}+\frac{1}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{a^{2}}{4} times \frac{3}{3}. Multiply \frac{a}{3} times \frac{4}{4}.
\frac{3a^{2}+4a}{12}+\frac{1}{9}
Since \frac{3a^{2}}{12} and \frac{4a}{12} have the same denominator, add them by adding their numerators.
\frac{3\left(3a^{2}+4a\right)}{36}+\frac{4}{36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12 and 9 is 36. Multiply \frac{3a^{2}+4a}{12} times \frac{3}{3}. Multiply \frac{1}{9} times \frac{4}{4}.
\frac{3\left(3a^{2}+4a\right)+4}{36}
Since \frac{3\left(3a^{2}+4a\right)}{36} and \frac{4}{36} have the same denominator, add them by adding their numerators.
\frac{9a^{2}+12a+4}{36}
Do the multiplications in 3\left(3a^{2}+4a\right)+4.
\frac{9a^{2}+12a+4}{36}
Factor out \frac{1}{36}.
\left(3a+2\right)^{2}
Consider 9a^{2}+12a+4. Use the perfect square formula, p^{2}+2pq+q^{2}=\left(p+q\right)^{2}, where p=3a and q=2.
\frac{\left(3a+2\right)^{2}}{36}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}