Solve for a
a=\frac{b^{2}}{c}
b\neq 0\text{ and }c\neq 0
Solve for b (complex solution)
b=-\sqrt{a}\sqrt{c}
b=\sqrt{a}\sqrt{c}\text{, }a\neq 0\text{ and }c\neq 0
Solve for b
b=\sqrt{ac}
b=-\sqrt{ac}\text{, }\left(c<0\text{ and }a<0\right)\text{ or }\left(a>0\text{ and }c>0\right)
Share
Copied to clipboard
a^{2}+b^{2}=a\left(a+c\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of ab,b.
a^{2}+b^{2}=a^{2}+ac
Use the distributive property to multiply a by a+c.
a^{2}+b^{2}-a^{2}=ac
Subtract a^{2} from both sides.
b^{2}=ac
Combine a^{2} and -a^{2} to get 0.
ac=b^{2}
Swap sides so that all variable terms are on the left hand side.
ca=b^{2}
The equation is in standard form.
\frac{ca}{c}=\frac{b^{2}}{c}
Divide both sides by c.
a=\frac{b^{2}}{c}
Dividing by c undoes the multiplication by c.
a=\frac{b^{2}}{c}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}