Evaluate
\frac{a^{2}+ab-1}{a\left(a+b\right)}
Expand
\frac{a^{2}+ab-1}{a\left(a+b\right)}
Share
Copied to clipboard
\frac{a+b+\frac{1}{a+b}-\left(\frac{aa}{a}+\frac{1}{a}\right)}{b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{a+b+\frac{1}{a+b}-\frac{aa+1}{a}}{b}
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{a+b+\frac{1}{a+b}-\frac{a^{2}+1}{a}}{b}
Do the multiplications in aa+1.
\frac{\frac{\left(a+b\right)\left(a+b\right)}{a+b}+\frac{1}{a+b}-\frac{a^{2}+1}{a}}{b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+b times \frac{a+b}{a+b}.
\frac{\frac{\left(a+b\right)\left(a+b\right)+1}{a+b}-\frac{a^{2}+1}{a}}{b}
Since \frac{\left(a+b\right)\left(a+b\right)}{a+b} and \frac{1}{a+b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+ab+ab+b^{2}+1}{a+b}-\frac{a^{2}+1}{a}}{b}
Do the multiplications in \left(a+b\right)\left(a+b\right)+1.
\frac{\frac{a^{2}+b^{2}+2ab+1}{a+b}-\frac{a^{2}+1}{a}}{b}
Combine like terms in a^{2}+ab+ab+b^{2}+1.
\frac{\frac{\left(a^{2}+b^{2}+2ab+1\right)a}{a\left(a+b\right)}-\frac{\left(a^{2}+1\right)\left(a+b\right)}{a\left(a+b\right)}}{b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a is a\left(a+b\right). Multiply \frac{a^{2}+b^{2}+2ab+1}{a+b} times \frac{a}{a}. Multiply \frac{a^{2}+1}{a} times \frac{a+b}{a+b}.
\frac{\frac{\left(a^{2}+b^{2}+2ab+1\right)a-\left(a^{2}+1\right)\left(a+b\right)}{a\left(a+b\right)}}{b}
Since \frac{\left(a^{2}+b^{2}+2ab+1\right)a}{a\left(a+b\right)} and \frac{\left(a^{2}+1\right)\left(a+b\right)}{a\left(a+b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{3}+b^{2}a+2a^{2}b+a-a^{3}-a^{2}b-a-b}{a\left(a+b\right)}}{b}
Do the multiplications in \left(a^{2}+b^{2}+2ab+1\right)a-\left(a^{2}+1\right)\left(a+b\right).
\frac{\frac{-b+a^{2}b+b^{2}a}{a\left(a+b\right)}}{b}
Combine like terms in a^{3}+b^{2}a+2a^{2}b+a-a^{3}-a^{2}b-a-b.
\frac{-b+a^{2}b+b^{2}a}{a\left(a+b\right)b}
Express \frac{\frac{-b+a^{2}b+b^{2}a}{a\left(a+b\right)}}{b} as a single fraction.
\frac{b\left(a^{2}+ab-1\right)}{ab\left(a+b\right)}
Factor the expressions that are not already factored.
\frac{a^{2}+ab-1}{a\left(a+b\right)}
Cancel out b in both numerator and denominator.
\frac{a^{2}+ab-1}{a^{2}+ab}
Expand the expression.
\frac{a+b+\frac{1}{a+b}-\left(\frac{aa}{a}+\frac{1}{a}\right)}{b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{a}{a}.
\frac{a+b+\frac{1}{a+b}-\frac{aa+1}{a}}{b}
Since \frac{aa}{a} and \frac{1}{a} have the same denominator, add them by adding their numerators.
\frac{a+b+\frac{1}{a+b}-\frac{a^{2}+1}{a}}{b}
Do the multiplications in aa+1.
\frac{\frac{\left(a+b\right)\left(a+b\right)}{a+b}+\frac{1}{a+b}-\frac{a^{2}+1}{a}}{b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a+b times \frac{a+b}{a+b}.
\frac{\frac{\left(a+b\right)\left(a+b\right)+1}{a+b}-\frac{a^{2}+1}{a}}{b}
Since \frac{\left(a+b\right)\left(a+b\right)}{a+b} and \frac{1}{a+b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+ab+ab+b^{2}+1}{a+b}-\frac{a^{2}+1}{a}}{b}
Do the multiplications in \left(a+b\right)\left(a+b\right)+1.
\frac{\frac{a^{2}+b^{2}+2ab+1}{a+b}-\frac{a^{2}+1}{a}}{b}
Combine like terms in a^{2}+ab+ab+b^{2}+1.
\frac{\frac{\left(a^{2}+b^{2}+2ab+1\right)a}{a\left(a+b\right)}-\frac{\left(a^{2}+1\right)\left(a+b\right)}{a\left(a+b\right)}}{b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a is a\left(a+b\right). Multiply \frac{a^{2}+b^{2}+2ab+1}{a+b} times \frac{a}{a}. Multiply \frac{a^{2}+1}{a} times \frac{a+b}{a+b}.
\frac{\frac{\left(a^{2}+b^{2}+2ab+1\right)a-\left(a^{2}+1\right)\left(a+b\right)}{a\left(a+b\right)}}{b}
Since \frac{\left(a^{2}+b^{2}+2ab+1\right)a}{a\left(a+b\right)} and \frac{\left(a^{2}+1\right)\left(a+b\right)}{a\left(a+b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a^{3}+b^{2}a+2a^{2}b+a-a^{3}-a^{2}b-a-b}{a\left(a+b\right)}}{b}
Do the multiplications in \left(a^{2}+b^{2}+2ab+1\right)a-\left(a^{2}+1\right)\left(a+b\right).
\frac{\frac{-b+a^{2}b+b^{2}a}{a\left(a+b\right)}}{b}
Combine like terms in a^{3}+b^{2}a+2a^{2}b+a-a^{3}-a^{2}b-a-b.
\frac{-b+a^{2}b+b^{2}a}{a\left(a+b\right)b}
Express \frac{\frac{-b+a^{2}b+b^{2}a}{a\left(a+b\right)}}{b} as a single fraction.
\frac{b\left(a^{2}+ab-1\right)}{ab\left(a+b\right)}
Factor the expressions that are not already factored.
\frac{a^{2}+ab-1}{a\left(a+b\right)}
Cancel out b in both numerator and denominator.
\frac{a^{2}+ab-1}{a^{2}+ab}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}