Evaluate
\frac{2a\left(b-a\right)}{b-1}
Expand
\frac{2\left(ab-a^{2}\right)}{b-1}
Share
Copied to clipboard
\frac{2a}{a^{2}+ab}\times \frac{a^{2}b^{2}-a^{4}}{ab-a}
Combine a and a to get 2a.
\frac{2a}{a\left(a+b\right)}\times \frac{a^{2}b^{2}-a^{4}}{ab-a}
Factor the expressions that are not already factored in \frac{2a}{a^{2}+ab}.
\frac{2}{a+b}\times \frac{a^{2}b^{2}-a^{4}}{ab-a}
Cancel out a in both numerator and denominator.
\frac{2}{a+b}\times \frac{\left(a+b\right)\left(-a+b\right)a^{2}}{a\left(b-1\right)}
Factor the expressions that are not already factored in \frac{a^{2}b^{2}-a^{4}}{ab-a}.
\frac{2}{a+b}\times \frac{a\left(a+b\right)\left(-a+b\right)}{b-1}
Cancel out a in both numerator and denominator.
\frac{2a\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(b-1\right)}
Multiply \frac{2}{a+b} times \frac{a\left(a+b\right)\left(-a+b\right)}{b-1} by multiplying numerator times numerator and denominator times denominator.
\frac{2a\left(-a+b\right)}{b-1}
Cancel out a+b in both numerator and denominator.
\frac{-2a^{2}+2ab}{b-1}
Use the distributive property to multiply 2a by -a+b.
\frac{2a}{a^{2}+ab}\times \frac{a^{2}b^{2}-a^{4}}{ab-a}
Combine a and a to get 2a.
\frac{2a}{a\left(a+b\right)}\times \frac{a^{2}b^{2}-a^{4}}{ab-a}
Factor the expressions that are not already factored in \frac{2a}{a^{2}+ab}.
\frac{2}{a+b}\times \frac{a^{2}b^{2}-a^{4}}{ab-a}
Cancel out a in both numerator and denominator.
\frac{2}{a+b}\times \frac{\left(a+b\right)\left(-a+b\right)a^{2}}{a\left(b-1\right)}
Factor the expressions that are not already factored in \frac{a^{2}b^{2}-a^{4}}{ab-a}.
\frac{2}{a+b}\times \frac{a\left(a+b\right)\left(-a+b\right)}{b-1}
Cancel out a in both numerator and denominator.
\frac{2a\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(b-1\right)}
Multiply \frac{2}{a+b} times \frac{a\left(a+b\right)\left(-a+b\right)}{b-1} by multiplying numerator times numerator and denominator times denominator.
\frac{2a\left(-a+b\right)}{b-1}
Cancel out a+b in both numerator and denominator.
\frac{-2a^{2}+2ab}{b-1}
Use the distributive property to multiply 2a by -a+b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}