Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+5}{2\left(a+3\right)}+\frac{a+7}{\left(a-1\right)\left(a+3\right)}
Factor 2a+6. Factor a^{2}+2a-3.
\frac{\left(a+5\right)\left(a-1\right)}{2\left(a-1\right)\left(a+3\right)}+\frac{2\left(a+7\right)}{2\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+3\right) and \left(a-1\right)\left(a+3\right) is 2\left(a-1\right)\left(a+3\right). Multiply \frac{a+5}{2\left(a+3\right)} times \frac{a-1}{a-1}. Multiply \frac{a+7}{\left(a-1\right)\left(a+3\right)} times \frac{2}{2}.
\frac{\left(a+5\right)\left(a-1\right)+2\left(a+7\right)}{2\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a+5\right)\left(a-1\right)}{2\left(a-1\right)\left(a+3\right)} and \frac{2\left(a+7\right)}{2\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-a+5a-5+2a+14}{2\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a+5\right)\left(a-1\right)+2\left(a+7\right).
\frac{a^{2}+6a+9}{2\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{2}-a+5a-5+2a+14.
\frac{\left(a+3\right)^{2}}{2\left(a-1\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{a^{2}+6a+9}{2\left(a-1\right)\left(a+3\right)}.
\frac{a+3}{2\left(a-1\right)}
Cancel out a+3 in both numerator and denominator.
\frac{a+3}{2a-2}
Expand 2\left(a-1\right).
\frac{a+5}{2\left(a+3\right)}+\frac{a+7}{\left(a-1\right)\left(a+3\right)}
Factor 2a+6. Factor a^{2}+2a-3.
\frac{\left(a+5\right)\left(a-1\right)}{2\left(a-1\right)\left(a+3\right)}+\frac{2\left(a+7\right)}{2\left(a-1\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a+3\right) and \left(a-1\right)\left(a+3\right) is 2\left(a-1\right)\left(a+3\right). Multiply \frac{a+5}{2\left(a+3\right)} times \frac{a-1}{a-1}. Multiply \frac{a+7}{\left(a-1\right)\left(a+3\right)} times \frac{2}{2}.
\frac{\left(a+5\right)\left(a-1\right)+2\left(a+7\right)}{2\left(a-1\right)\left(a+3\right)}
Since \frac{\left(a+5\right)\left(a-1\right)}{2\left(a-1\right)\left(a+3\right)} and \frac{2\left(a+7\right)}{2\left(a-1\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-a+5a-5+2a+14}{2\left(a-1\right)\left(a+3\right)}
Do the multiplications in \left(a+5\right)\left(a-1\right)+2\left(a+7\right).
\frac{a^{2}+6a+9}{2\left(a-1\right)\left(a+3\right)}
Combine like terms in a^{2}-a+5a-5+2a+14.
\frac{\left(a+3\right)^{2}}{2\left(a-1\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{a^{2}+6a+9}{2\left(a-1\right)\left(a+3\right)}.
\frac{a+3}{2\left(a-1\right)}
Cancel out a+3 in both numerator and denominator.
\frac{a+3}{2a-2}
Expand 2\left(a-1\right).