Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a+2\right)\left(a-1\right)}{\left(a-1\right)\left(2a+3\right)}-\frac{a\left(2a+3\right)}{\left(a-1\right)\left(2a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a+3 and a-1 is \left(a-1\right)\left(2a+3\right). Multiply \frac{a+2}{2a+3} times \frac{a-1}{a-1}. Multiply \frac{a}{a-1} times \frac{2a+3}{2a+3}.
\frac{\left(a+2\right)\left(a-1\right)-a\left(2a+3\right)}{\left(a-1\right)\left(2a+3\right)}
Since \frac{\left(a+2\right)\left(a-1\right)}{\left(a-1\right)\left(2a+3\right)} and \frac{a\left(2a+3\right)}{\left(a-1\right)\left(2a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+2a-2-2a^{2}-3a}{\left(a-1\right)\left(2a+3\right)}
Do the multiplications in \left(a+2\right)\left(a-1\right)-a\left(2a+3\right).
\frac{-a^{2}-2a-2}{\left(a-1\right)\left(2a+3\right)}
Combine like terms in a^{2}-a+2a-2-2a^{2}-3a.
\frac{-a^{2}-2a-2}{2a^{2}+a-3}
Expand \left(a-1\right)\left(2a+3\right).
\frac{\left(a+2\right)\left(a-1\right)}{\left(a-1\right)\left(2a+3\right)}-\frac{a\left(2a+3\right)}{\left(a-1\right)\left(2a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a+3 and a-1 is \left(a-1\right)\left(2a+3\right). Multiply \frac{a+2}{2a+3} times \frac{a-1}{a-1}. Multiply \frac{a}{a-1} times \frac{2a+3}{2a+3}.
\frac{\left(a+2\right)\left(a-1\right)-a\left(2a+3\right)}{\left(a-1\right)\left(2a+3\right)}
Since \frac{\left(a+2\right)\left(a-1\right)}{\left(a-1\right)\left(2a+3\right)} and \frac{a\left(2a+3\right)}{\left(a-1\right)\left(2a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+2a-2-2a^{2}-3a}{\left(a-1\right)\left(2a+3\right)}
Do the multiplications in \left(a+2\right)\left(a-1\right)-a\left(2a+3\right).
\frac{-a^{2}-2a-2}{\left(a-1\right)\left(2a+3\right)}
Combine like terms in a^{2}-a+2a-2-2a^{2}-3a.
\frac{-a^{2}-2a-2}{2a^{2}+a-3}
Expand \left(a-1\right)\left(2a+3\right).