Solve for x
\left\{\begin{matrix}x=a-2\text{, }&a\neq 0\\x\neq -2\text{, }&a=-1\end{matrix}\right.
Solve for a
a=x+2
a=-1\text{, }x\neq -2
Graph
Share
Copied to clipboard
a\left(a+1\right)+a\left(x+2\right)\left(-1\right)=x+2
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by a\left(x+2\right), the least common multiple of x+2,a.
a^{2}+a+a\left(x+2\right)\left(-1\right)=x+2
Use the distributive property to multiply a by a+1.
a^{2}+a+\left(ax+2a\right)\left(-1\right)=x+2
Use the distributive property to multiply a by x+2.
a^{2}+a-ax-2a=x+2
Use the distributive property to multiply ax+2a by -1.
a^{2}-a-ax=x+2
Combine a and -2a to get -a.
a^{2}-a-ax-x=2
Subtract x from both sides.
-a-ax-x=2-a^{2}
Subtract a^{2} from both sides.
-ax-x=2-a^{2}+a
Add a to both sides.
\left(-a-1\right)x=2-a^{2}+a
Combine all terms containing x.
\left(-a-1\right)x=2+a-a^{2}
The equation is in standard form.
\frac{\left(-a-1\right)x}{-a-1}=-\frac{\left(a-2\right)\left(a+1\right)}{-a-1}
Divide both sides by -a-1.
x=-\frac{\left(a-2\right)\left(a+1\right)}{-a-1}
Dividing by -a-1 undoes the multiplication by -a-1.
x=a-2
Divide -\left(-2+a\right)\left(1+a\right) by -a-1.
x=a-2\text{, }x\neq -2
Variable x cannot be equal to -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}