Solve for a
a=0
Share
Copied to clipboard
\left(a+1\right)\left(a^{2}+1\right)\left(a+1\right)=\left(a-1\right)\left(a^{2}+1\right)\left(a-1\right)+\left(a^{2}-1\right)\times 4a
Variable a cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(a-1\right)\left(a+1\right)\left(a^{2}+1\right), the least common multiple of a-1,a+1,a^{2}+1.
\left(a^{3}+a+a^{2}+1\right)\left(a+1\right)=\left(a-1\right)\left(a^{2}+1\right)\left(a-1\right)+\left(a^{2}-1\right)\times 4a
Use the distributive property to multiply a+1 by a^{2}+1.
a^{4}+2a^{3}+2a^{2}+2a+1=\left(a-1\right)\left(a^{2}+1\right)\left(a-1\right)+\left(a^{2}-1\right)\times 4a
Use the distributive property to multiply a^{3}+a+a^{2}+1 by a+1 and combine like terms.
a^{4}+2a^{3}+2a^{2}+2a+1=\left(a-1\right)^{2}\left(a^{2}+1\right)+\left(a^{2}-1\right)\times 4a
Multiply a-1 and a-1 to get \left(a-1\right)^{2}.
a^{4}+2a^{3}+2a^{2}+2a+1=\left(a^{2}-2a+1\right)\left(a^{2}+1\right)+\left(a^{2}-1\right)\times 4a
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(a-1\right)^{2}.
a^{4}+2a^{3}+2a^{2}+2a+1=a^{4}+2a^{2}-2a^{3}-2a+1+\left(a^{2}-1\right)\times 4a
Use the distributive property to multiply a^{2}-2a+1 by a^{2}+1 and combine like terms.
a^{4}+2a^{3}+2a^{2}+2a+1=a^{4}+2a^{2}-2a^{3}-2a+1+\left(4a^{2}-4\right)a
Use the distributive property to multiply a^{2}-1 by 4.
a^{4}+2a^{3}+2a^{2}+2a+1=a^{4}+2a^{2}-2a^{3}-2a+1+4a^{3}-4a
Use the distributive property to multiply 4a^{2}-4 by a.
a^{4}+2a^{3}+2a^{2}+2a+1=a^{4}+2a^{2}+2a^{3}-2a+1-4a
Combine -2a^{3} and 4a^{3} to get 2a^{3}.
a^{4}+2a^{3}+2a^{2}+2a+1=a^{4}+2a^{2}+2a^{3}-6a+1
Combine -2a and -4a to get -6a.
a^{4}+2a^{3}+2a^{2}+2a+1-a^{4}=2a^{2}+2a^{3}-6a+1
Subtract a^{4} from both sides.
2a^{3}+2a^{2}+2a+1=2a^{2}+2a^{3}-6a+1
Combine a^{4} and -a^{4} to get 0.
2a^{3}+2a^{2}+2a+1-2a^{2}=2a^{3}-6a+1
Subtract 2a^{2} from both sides.
2a^{3}+2a+1=2a^{3}-6a+1
Combine 2a^{2} and -2a^{2} to get 0.
2a^{3}+2a+1-2a^{3}=-6a+1
Subtract 2a^{3} from both sides.
2a+1=-6a+1
Combine 2a^{3} and -2a^{3} to get 0.
2a+1+6a=1
Add 6a to both sides.
8a+1=1
Combine 2a and 6a to get 8a.
8a=1-1
Subtract 1 from both sides.
8a=0
Subtract 1 from 1 to get 0.
a=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 8 is not equal to 0, a must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}