Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a+1}{\left(a-3\right)\left(a+2\right)}-\frac{a-4}{\left(a-3\right)\left(a-1\right)}+\frac{a+4}{a^{2}+a-2}
Factor a^{2}-a-6. Factor a^{2}-4a+3.
\frac{\left(a+1\right)\left(a-1\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}-\frac{\left(a-4\right)\left(a+2\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+2\right) and \left(a-3\right)\left(a-1\right) is \left(a-3\right)\left(a-1\right)\left(a+2\right). Multiply \frac{a+1}{\left(a-3\right)\left(a+2\right)} times \frac{a-1}{a-1}. Multiply \frac{a-4}{\left(a-3\right)\left(a-1\right)} times \frac{a+2}{a+2}.
\frac{\left(a+1\right)\left(a-1\right)-\left(a-4\right)\left(a+2\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
Since \frac{\left(a+1\right)\left(a-1\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} and \frac{\left(a-4\right)\left(a+2\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+a-1-a^{2}-2a+4a+8}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
Do the multiplications in \left(a+1\right)\left(a-1\right)-\left(a-4\right)\left(a+2\right).
\frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
Combine like terms in a^{2}-a+a-1-a^{2}-2a+4a+8.
\frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{\left(a-1\right)\left(a+2\right)}
Factor a^{2}+a-2.
\frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{\left(a+4\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a-1\right)\left(a+2\right) and \left(a-1\right)\left(a+2\right) is \left(a-3\right)\left(a-1\right)\left(a+2\right). Multiply \frac{a+4}{\left(a-1\right)\left(a+2\right)} times \frac{a-3}{a-3}.
\frac{2a+7+\left(a+4\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
Since \frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} and \frac{\left(a+4\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{2a+7+a^{2}-3a+4a-12}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
Do the multiplications in 2a+7+\left(a+4\right)\left(a-3\right).
\frac{3a-5+a^{2}}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
Combine like terms in 2a+7+a^{2}-3a+4a-12.
\frac{3a-5+a^{2}}{a^{3}-2a^{2}-5a+6}
Expand \left(a-3\right)\left(a-1\right)\left(a+2\right).
\frac{a+1}{\left(a-3\right)\left(a+2\right)}-\frac{a-4}{\left(a-3\right)\left(a-1\right)}+\frac{a+4}{a^{2}+a-2}
Factor a^{2}-a-6. Factor a^{2}-4a+3.
\frac{\left(a+1\right)\left(a-1\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}-\frac{\left(a-4\right)\left(a+2\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+2\right) and \left(a-3\right)\left(a-1\right) is \left(a-3\right)\left(a-1\right)\left(a+2\right). Multiply \frac{a+1}{\left(a-3\right)\left(a+2\right)} times \frac{a-1}{a-1}. Multiply \frac{a-4}{\left(a-3\right)\left(a-1\right)} times \frac{a+2}{a+2}.
\frac{\left(a+1\right)\left(a-1\right)-\left(a-4\right)\left(a+2\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
Since \frac{\left(a+1\right)\left(a-1\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} and \frac{\left(a-4\right)\left(a+2\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-a+a-1-a^{2}-2a+4a+8}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
Do the multiplications in \left(a+1\right)\left(a-1\right)-\left(a-4\right)\left(a+2\right).
\frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{a^{2}+a-2}
Combine like terms in a^{2}-a+a-1-a^{2}-2a+4a+8.
\frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{a+4}{\left(a-1\right)\left(a+2\right)}
Factor a^{2}+a-2.
\frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}+\frac{\left(a+4\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a-1\right)\left(a+2\right) and \left(a-1\right)\left(a+2\right) is \left(a-3\right)\left(a-1\right)\left(a+2\right). Multiply \frac{a+4}{\left(a-1\right)\left(a+2\right)} times \frac{a-3}{a-3}.
\frac{2a+7+\left(a+4\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
Since \frac{2a+7}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} and \frac{\left(a+4\right)\left(a-3\right)}{\left(a-3\right)\left(a-1\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{2a+7+a^{2}-3a+4a-12}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
Do the multiplications in 2a+7+\left(a+4\right)\left(a-3\right).
\frac{3a-5+a^{2}}{\left(a-3\right)\left(a-1\right)\left(a+2\right)}
Combine like terms in 2a+7+a^{2}-3a+4a-12.
\frac{3a-5+a^{2}}{a^{3}-2a^{2}-5a+6}
Expand \left(a-3\right)\left(a-1\right)\left(a+2\right).