Evaluate
b
Differentiate w.r.t. b
1
Share
Copied to clipboard
\frac{\frac{a\left(1+ab\right)}{1+ab}+\frac{b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{1+ab}{1+ab}.
\frac{\frac{a\left(1+ab\right)+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
Since \frac{a\left(1+ab\right)}{1+ab} and \frac{b-a}{1+ab} have the same denominator, add them by adding their numerators.
\frac{\frac{a+a^{2}b+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
Do the multiplications in a\left(1+ab\right)+b-a.
\frac{\frac{b+a^{2}b}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}}
Combine like terms in a+a^{2}b+b-a.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab}{1+ab}-\frac{ab-a^{2}}{1+ab}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+ab}{1+ab}.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-\left(ab-a^{2}\right)}{1+ab}}
Since \frac{1+ab}{1+ab} and \frac{ab-a^{2}}{1+ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-ab+a^{2}}{1+ab}}
Do the multiplications in 1+ab-\left(ab-a^{2}\right).
\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+a^{2}}{1+ab}}
Combine like terms in 1+ab-ab+a^{2}.
\frac{\left(b+a^{2}b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+a^{2}\right)}
Divide \frac{b+a^{2}b}{1+ab} by \frac{1+a^{2}}{1+ab} by multiplying \frac{b+a^{2}b}{1+ab} by the reciprocal of \frac{1+a^{2}}{1+ab}.
\frac{ba^{2}+b}{a^{2}+1}
Cancel out ab+1 in both numerator and denominator.
\frac{b\left(a^{2}+1\right)}{a^{2}+1}
Factor the expressions that are not already factored.
b
Cancel out a^{2}+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{a\left(1+ab\right)}{1+ab}+\frac{b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
To add or subtract expressions, expand them to make their denominators the same. Multiply a times \frac{1+ab}{1+ab}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{a\left(1+ab\right)+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
Since \frac{a\left(1+ab\right)}{1+ab} and \frac{b-a}{1+ab} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{a+a^{2}b+b-a}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
Do the multiplications in a\left(1+ab\right)+b-a.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{1-\frac{ab-a^{2}}{1+ab}})
Combine like terms in a+a^{2}b+b-a.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab}{1+ab}-\frac{ab-a^{2}}{1+ab}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{1+ab}{1+ab}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-\left(ab-a^{2}\right)}{1+ab}})
Since \frac{1+ab}{1+ab} and \frac{ab-a^{2}}{1+ab} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+ab-ab+a^{2}}{1+ab}})
Do the multiplications in 1+ab-\left(ab-a^{2}\right).
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\frac{b+a^{2}b}{1+ab}}{\frac{1+a^{2}}{1+ab}})
Combine like terms in 1+ab-ab+a^{2}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{\left(b+a^{2}b\right)\left(1+ab\right)}{\left(1+ab\right)\left(1+a^{2}\right)})
Divide \frac{b+a^{2}b}{1+ab} by \frac{1+a^{2}}{1+ab} by multiplying \frac{b+a^{2}b}{1+ab} by the reciprocal of \frac{1+a^{2}}{1+ab}.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{ba^{2}+b}{a^{2}+1})
Cancel out ab+1 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}b}(\frac{b\left(a^{2}+1\right)}{a^{2}+1})
Factor the expressions that are not already factored in \frac{ba^{2}+b}{a^{2}+1}.
\frac{\mathrm{d}}{\mathrm{d}b}(b)
Cancel out a^{2}+1 in both numerator and denominator.
b^{1-1}
The derivative of ax^{n} is nax^{n-1}.
b^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}