Solve for N_p
\left\{\begin{matrix}N_{p}=\frac{N_{s}V_{p}}{V_{s}}\text{, }&N_{s}\neq 0\text{ and }V_{p}\neq 0\text{ and }V_{s}\neq 0\\N_{p}\neq 0\text{, }&V_{s}=0\text{ and }N_{s}=0\text{ and }V_{p}\neq 0\end{matrix}\right.
Solve for N_s
N_{s}=\frac{N_{p}V_{s}}{V_{p}}
V_{p}\neq 0\text{ and }N_{p}\neq 0
Share
Copied to clipboard
N_{p}V_{s}=V_{p}N_{s}
Variable N_{p} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by N_{p}V_{p}, the least common multiple of V_{p},N_{p}.
V_{s}N_{p}=N_{s}V_{p}
The equation is in standard form.
\frac{V_{s}N_{p}}{V_{s}}=\frac{N_{s}V_{p}}{V_{s}}
Divide both sides by V_{s}.
N_{p}=\frac{N_{s}V_{p}}{V_{s}}
Dividing by V_{s} undoes the multiplication by V_{s}.
N_{p}=\frac{N_{s}V_{p}}{V_{s}}\text{, }N_{p}\neq 0
Variable N_{p} cannot be equal to 0.
N_{p}V_{s}=V_{p}N_{s}
Multiply both sides of the equation by N_{p}V_{p}, the least common multiple of V_{p},N_{p}.
V_{p}N_{s}=N_{p}V_{s}
Swap sides so that all variable terms are on the left hand side.
\frac{V_{p}N_{s}}{V_{p}}=\frac{N_{p}V_{s}}{V_{p}}
Divide both sides by V_{p}.
N_{s}=\frac{N_{p}V_{s}}{V_{p}}
Dividing by V_{p} undoes the multiplication by V_{p}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}