Solve for V
\left\{\begin{matrix}V=-\frac{5\left(V_{a}+25\right)}{a}\text{, }&a\neq 0\\V\in \mathrm{R}\text{, }&V_{a}=-25\text{ and }a=0\end{matrix}\right.
Solve for V_a
V_{a}=-\frac{Va}{5}-25
Share
Copied to clipboard
5\left(V_{a}+25\right)+Va=0
Multiply both sides of the equation by 25, the least common multiple of 5,25.
5V_{a}+125+Va=0
Use the distributive property to multiply 5 by V_{a}+25.
125+Va=-5V_{a}
Subtract 5V_{a} from both sides. Anything subtracted from zero gives its negation.
Va=-5V_{a}-125
Subtract 125 from both sides.
aV=-5V_{a}-125
The equation is in standard form.
\frac{aV}{a}=\frac{-5V_{a}-125}{a}
Divide both sides by a.
V=\frac{-5V_{a}-125}{a}
Dividing by a undoes the multiplication by a.
V=-\frac{5\left(V_{a}+25\right)}{a}
Divide -5V_{a}-125 by a.
5\left(V_{a}+25\right)+Va=0
Multiply both sides of the equation by 25, the least common multiple of 5,25.
5V_{a}+125+Va=0
Use the distributive property to multiply 5 by V_{a}+25.
5V_{a}+Va=-125
Subtract 125 from both sides. Anything subtracted from zero gives its negation.
5V_{a}=-125-Va
Subtract Va from both sides.
5V_{a}=-Va-125
The equation is in standard form.
\frac{5V_{a}}{5}=\frac{-Va-125}{5}
Divide both sides by 5.
V_{a}=\frac{-Va-125}{5}
Dividing by 5 undoes the multiplication by 5.
V_{a}=-\frac{Va}{5}-25
Divide -125-Va by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}