Solve for C
C=-\left(x-5\right)\left(x-2\right)
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{\sqrt{9-4C}+7}{2}\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{9-4C}+7}{2}\text{, }&C\neq -10\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{-\sqrt{9-4C}+7}{2}\text{, }&C\neq -10\text{ and }C\leq \frac{9}{4}\\x=\frac{\sqrt{9-4C}+7}{2}\text{, }&C\leq \frac{9}{4}\end{matrix}\right.
Graph
Share
Copied to clipboard
Cx=-xx^{2}+7xx+x\left(-10\right)
Multiply both sides of the equation by x.
Cx=-x^{3}+7xx+x\left(-10\right)
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
Cx=-x^{3}+7x^{2}+x\left(-10\right)
Multiply x and x to get x^{2}.
xC=-x^{3}+7x^{2}-10x
The equation is in standard form.
\frac{xC}{x}=\frac{x\left(2-x\right)\left(x-5\right)}{x}
Divide both sides by x.
C=\frac{x\left(2-x\right)\left(x-5\right)}{x}
Dividing by x undoes the multiplication by x.
C=\left(2-x\right)\left(x-5\right)
Divide x\left(-5+x\right)\left(2-x\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}